PERTURBATION OF RUELLE RESONANCES AND FAURE-SJOSTRAND ANISOTROPIC SPACE

被引:7
作者
Bonthonneau, Yannick Guedes [1 ]
机构
[1] Univ Rennes 1, Inst Rech Math Rennes, IRMAR, UMR 6625,CNRS, F-35000 Rennes, France
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2020年 / 61卷 / 01期
关键词
ANOSOV-FLOWS; SYSTEMS;
D O I
10.33044/revuma.v61n1a03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an Anosov vector field X-0, all sufficiently close vector fields are also of Anosov type. In this note, we check that the anisotropic spaces described by Faure and Sjostrand and by Dyatlov and Zworski can be chosen adapted to any smooth vector field sufficiently close to X-0 in C-1 norm.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 15 条
[1]   The Quest for the Ultimate Anisotropic Banach Space [J].
Baladi, Viviane .
JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (3-4) :525-557
[2]   Ruelle-Perron-Yrobenius spectrum for Anosov maps [J].
Blank, M ;
Keller, G ;
Liverani, C .
NONLINEARITY, 2002, 15 (06) :1905-1973
[3]   Smooth Anosov flows: Correlation spectra and stability [J].
Butterley, Oliver ;
Liverani, Carlangelo .
JOURNAL OF MODERN DYNAMICS, 2007, 1 (02) :301-322
[4]   CANONICAL PERTURBATION-THEORY OF ANOSOV SYSTEMS AND REGULARITY RESULTS FOR THE LIVSIC COHOMOLOGY EQUATION [J].
DELALLAVE, R ;
MARCO, JM ;
MORIYON, R .
ANNALS OF MATHEMATICS, 1986, 123 (03) :537-611
[5]  
Dyatlov S., 2019, AMS-Graduate Studies in Mathematics, V200
[6]  
Dyatlov S, 2016, ANN SCI ECOLE NORM S, V49, P543
[7]  
Faure F., 2008, OPEN MATH J, V1, P35
[8]   Upper Bound on the Density of Ruelle Resonances for Anosov Flows [J].
Faure, Frederic ;
Sjoestrand, Johannes .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) :325-364
[9]   Anosov flows and dynamical zeta functions [J].
Giulietti, P. ;
Liverani, C. ;
Pollicott, M. .
ANNALS OF MATHEMATICS, 2013, 178 (02) :687-773
[10]   Banach spaces adapted to Anosov systems [J].
Gouëzel, S ;
Liverani, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :189-217