Preparation, characterization, and activity of SnO2 nanoparticles supported on Al2O3 as a catalyst for the selective reduction of NO with C3H6

被引:12
作者
Haneda, Masaaki [1 ,2 ]
Ota, Yusuke [1 ]
Doi, Yasuyuki [1 ,2 ]
Hattori, Masatomo [1 ,3 ]
机构
[1] Nagoya Inst Technol, Adv Ceram Res Ctr, 10-6-29 Asahigaoka, Tajimi, Gifu 5070071, Japan
[2] Nagoya Inst Technol, Frontier Res Inst Mat Sci, Showa Ku, Gokiso Cho, Nagoya, Aichi 4658555, Japan
[3] Nagoya Univ, Inst Mat & Syst Sustainabil, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
关键词
METAL-OXIDE CATALYSTS; SOL-GEL METHOD; SNO2/AL2O3; CATALYST; HYDROTHERMAL SYNTHESIS; CH4; OXIDATION; SIZE; TIN; NANOCRYSTALS; PROPENE; HYDROCARBONS;
D O I
10.1007/s10853-016-0307-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
SnO2 nanoparticles were prepared using the hydrothermal method. The particle size was gradually increased with increasing the hydrothermal temperature and period. The size of SnO2 nanoparticles was successfully controlled in the range of 2.3-5.9 nm. The deposition of SnO2 nanoparticles on to Al2O3 was made through impregnation process. TEM and XRD measurements revealed that SnO2 nanoparticles are highly dispersed on the surface of Al2O3 without changing the particle size. When SnO2 nanoparticles prepared at 150 A degrees C for 3 h were deposited on to Al2O3 (denoted as SnO2-150-3/Al2O3), a part of SnO2 nanoparticles was suspected to be dispersed inside of the pores of Al2O3. This is probably due to a small size of SnO2 nanoparticles compared with the pore diameter of Al2O3. On the other hand, SnO2 nanoparticles with relatively large size were found to be predominantly present on the outer surface of Al2O3. H-2-TPR measurements suggest the presence of SnO2-Al2O3 interaction in SnO2/Al2O3 catalysts. Especially, SnO2-150-3/Al2O3 was considered to include SnO2 nanoparticles interacting more strongly with Al2O3. SnO2/Al2O3 catalysts showed higher catalytic activity for the selective reduction of NO with C3H6 than Al2O3, suggesting that the SnO2/Al2O3 prepared using SnO2 nanoparticles is effective to develop highly active catalyst.
引用
收藏
页码:10949 / 10959
页数:11
相关论文
共 47 条
[1]   Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol-Gel Method as a Catalyst for the Hydrogenation of Styrene [J].
Adnan, Rohana ;
Razana, Nur Ariesma ;
Rahman, Ismail Abdul ;
Farrukh, Muhammad Akhyar .
JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2010, 57 (02) :222-229
[2]   Support effects on de-NOx catalytic properties of supported tin oxides [J].
Auroux, A ;
Sprinceana, D ;
Gervasini, A .
JOURNAL OF CATALYSIS, 2000, 195 (01) :140-150
[3]   Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment [J].
Baik, NS ;
Sakai, G ;
Miura, N ;
Yamazoe, N .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (12) :2983-2987
[4]   Knowledge and know-how in emission control for mobile applications [J].
Burch, R .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2004, 46 (3-4) :271-333
[5]   Large-scale electrochemical synthesis of SnO2 nanoparticles [J].
Chen, Wei ;
Ghosh, Debraj ;
Chen, Shaowei .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (15) :5291-5299
[6]   Recent Advances in Tin Dioxide Materials: Some Developments in Thin Films, Nanowires, and Nanorods [J].
Chen, Zhiwen ;
Pan, Dengyu ;
Li, Zhen ;
Jiao, Zheng ;
Wu, Minghong ;
Shek, Chan-Hung ;
Wu, C. M. Lawrence ;
Lai, Joseph K. L. .
CHEMICAL REVIEWS, 2014, 114 (15) :7442-7486
[7]   Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol [J].
Chiu, Hui-Chi ;
Yeh, Chen-Sheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (20) :7256-7259
[8]   Green chemistry for nanoparticle synthesis [J].
Duan, Haohong ;
Wang, Dingsheng ;
Li, Yadong .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (16) :5778-5792
[9]   MODIFYING ACTION OF SN-4+ IONS LOCATED AT THE SURFACE OF A CR2O3 CATALYST INVESTIGATED BY MEANS OF MOSSBAUER-SPECTROSCOPY [J].
FABRITCHNYL, PB ;
SUDAKOVA, NR ;
BERENTSVEIG, VV ;
DEMAZEAU, G ;
AFANASOV, MI ;
ETOURNEAU, J .
JOURNAL OF MATERIALS CHEMISTRY, 1992, 2 (07) :763-764
[10]   Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability [J].
Fujihara, S ;
Maeda, T ;
Ohgi, H ;
Hosono, E ;
Imai, H ;
Kim, SH .
LANGMUIR, 2004, 20 (15) :6476-6481