Application of super-resolution fluorescence microscopy in hematologic malignancies

被引:5
|
作者
Yu, Yalan [1 ]
Yu, Jianing [1 ]
Huang, Zhen-Li [2 ]
Zhou, Fuling [1 ]
机构
[1] Wuhan Univ, Dept Hematol, Zhongnan Hosp, Wuhan 430071, Peoples R China
[2] Hainan Univ, Sch Biomed Engn, Key Lab Biomed Engn Hainan Prov, Haikou 570228, Hainan, Peoples R China
关键词
Hematologic malignancies; super-resolution fluorescence microscopy; structured illumination microscopy; stimulated emission depletion microscopy; single molecule localization microscopy; MINIMAL RESIDUAL DISEASE; STRUCTURED ILLUMINATION MICROSCOPY; CIRCULATING PLASMA-CELLS; MULTIPLE-MYELOMA; HODGKINS LYMPHOMA; RESOLUTION; CYTOMETRY; CRITERIA;
D O I
10.1142/S1793545822300051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hematologic malignancies are one of the most common malignant tumors caused by the clonal proliferation and differentiation of hematopoietic and lymphoid stem cells. The examination of bone marrow cells combined with immunodeficiency typing is of great significance to the diagnostic type, treatment and prognosis of hematologic malignancies. Super-resolution fluorescence microscopy (SRM) is a special kind of optical microscopy technology, which breaks the resolution limit and was awarded the Nobel Prize in Chemistry in 2014. With the development of SRM, many related technologies have been applied to the diagnosis and treatment of clinical diseases. It was reported that a major type of SRM technique, single molecule localization microscopy (SMLM), is more sensitive than flow cytometry (FC) in detecting cell membrane antigens' expression, thus enabling better chances in detecting antigens on hematopoietic cells than traditional analytic tools. Furthermore, SRM may be applied to clinical pathology and may guide precision medicine and personalized medicine for clone hematopoietic cell diseases. In this paper, we mainly discuss the application of SRM in clone hematological malignancies.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Super-resolution microscopy demystified
    Schermelleh, Lothar
    Ferrand, Alexia
    Huser, Thomas
    Eggeling, Christian
    Sauer, Markus
    Biehlmaier, Oliver
    Drummen, Gregor P. C.
    NATURE CELL BIOLOGY, 2019, 21 (01) : 72 - 84
  • [22] Super-resolution microscopy for nanosensing
    Galbraith, James A.
    Galbraith, Catherine G.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2011, 3 (03) : 247 - 255
  • [23] Super-resolution microscopy at a glance
    Galbraith, Catherine G.
    Galbraith, James A.
    JOURNAL OF CELL SCIENCE, 2011, 124 (10) : 1607 - 1611
  • [24] Live-Cell Super-resolution Fluorescence Microscopy
    A. S. Mishin
    K. A. Lukyanov
    Biochemistry (Moscow), 2019, 84 : 19 - 31
  • [25] Advancing biosensing through super-resolution fluorescence microscopy
    Go, Ga-eun
    Kim, Doory
    BIOSENSORS & BIOELECTRONICS, 2025, 278
  • [26] Exchangeable HaloTag Ligands for Super-Resolution Fluorescence Microscopy
    Kompa, Julian
    Bruins, Jorick
    Glogger, Marius
    Wilhelm, Jonas
    Frei, Michelle S.
    Tarnawski, Miroslaw
    D'Este, Elisa
    Heilemann, Mike
    Hiblot, Julien
    Johnsson, Kai
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (05) : 3075 - 3083
  • [27] Live-Cell Super-resolution Fluorescence Microscopy
    Mishin, A. S.
    Lukyanov, K. A.
    BIOCHEMISTRY-MOSCOW, 2019, 84 (Suppl 1) : 19 - 31
  • [28] Introduction to super-resolution microscopy
    Yamanaka, Masahito
    Smith, Nicholas I.
    Fujita, Katsumasa
    MICROSCOPY, 2014, 63 (03) : 177 - 192
  • [29] Continuous active development of super-resolution fluorescence microscopy
    Wang, Yong
    Fei, Jingyi
    PHYSICAL BIOLOGY, 2020, 17 (03)
  • [30] Bleaching-Resistant Super-Resolution Fluorescence Microscopy
    Kwon, Jiwoong
    Elgawish, Mohamed Saleh
    Shim, Sang-Hee
    ADVANCED SCIENCE, 2022, 9 (09)