Temperature-Dependent Nonlinear Damping in Palladium Nanomechanical Resonators

被引:12
作者
Kumar, Shelender [1 ]
Rebari, Shishram [1 ]
Pal, Satyendra Prakash [1 ]
Yadav, Shyam Sundar [1 ]
Kumar, Abhishek [1 ]
Aggarwal, Aaveg [1 ]
Indrajeet, Sagar [1 ]
Venkatesan, Ananth [1 ]
机构
[1] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Manauli 140306, India
关键词
nanoelectromechanical systems; nonlinear dissipation; palladium hydrogen system; Akhiezer damping; two-phonon process; DISSIPATION; SYSTEMS;
D O I
10.1021/acs.nanolett.1c00109
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advances in nanofabrication techniques have made it feasible to observe damping phenomena beyond the linear regime in nanomechanical systems. In this work, we report cubic nonlinear damping in palladium nanomechanical resonators. Nanoscale palladium beams exposed to a H-2 atmosphere become softer and display enhanced Duffing nonlinearity as well as nonlinear damping at ultralow temperatures. The damping is highest at the lowest temperatures of similar to 110 mK and decreases when warmed up to similar to 1 K. We experimentally demonstrate for the first time temperature-dependent nonlinear damping in a nano-mechanical system below 1 K. This is consistent with a predicted two-phonon-mediated nonlinear Akhiezer scenario with a ballistic phonon mean free path comparable to the beam thickness. This opens up new possibilities to engineer nonlinear phenomena at low temperatures.
引用
收藏
页码:2975 / 2981
页数:7
相关论文
共 45 条
  • [1] THERMAL-EXPANSION AND LATTICE ANHARMONICITY OF PD-H AND PD-D ALLOYS
    ABBENSETH, R
    WIPF, H
    [J]. JOURNAL OF PHYSICS F-METAL PHYSICS, 1980, 10 (03): : 353 - 366
  • [2] Diffusion-Induced Bistability of Driven Nanomechanical Resonators
    Atalaya, J.
    Isacsson, A.
    Dykman, M. I.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (22)
  • [3] Nonlinear damping and dephasing in nanomechanical systems
    Atalaya, Juan
    Kenny, Thomas W.
    Roukes, M. L.
    Dykman, M. I.
    [J]. PHYSICAL REVIEW B, 2016, 94 (19)
  • [4] Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance
    Badzey, RL
    Mohanty, P
    [J]. NATURE, 2005, 437 (7061) : 995 - 998
  • [5] Baierlein R., 1983, Newtonian Dynamics
  • [6] Quantum electromechanical systems
    Blencowe, M
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 395 (03): : 159 - 222
  • [7] Transmission-line resonators for the study of individual two-level tunneling systems
    Brehm, Jan David
    Bilmes, Alexander
    Weiss, Georg
    Ustinov, Alexey V.
    Lisenfeld, Juergen
    [J]. APPLIED PHYSICS LETTERS, 2017, 111 (11)
  • [8] Cross M., 2008, REV NONLINEAR DYNAMI
  • [9] Nonlinear damping in graphene resonators
    Croy, Alexander
    Midtvedt, Daniel
    Isacsson, Andreas
    Kinaret, Jari M.
    [J]. PHYSICAL REVIEW B, 2012, 86 (23)
  • [10] Eichler A, 2011, NAT NANOTECHNOL, V6, P339, DOI [10.1038/nnano.2011.71, 10.1038/NNANO.2011.71]