Feedback control modulation for controlling chaotic maps

被引:2
作者
Hansen, Roberta [1 ]
Gonzalez, Graciela A. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, DF, Argentina
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2021年 / 26卷 / 03期
关键词
chaos control; proportional feedback control; delayed feedback control; parameter modulation; control of hyperchaos; UNSTABLE PERIODIC-ORBITS; DELAYED-FEEDBACK; STABILIZATION; STABILITY; LIMITATION; SYSTEMS;
D O I
10.15388/namc.2021.26.23052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on existing feedback control methods such as OGY and Pyragas, alternative new schemes are proposed for stabilization of unstable periodic orbits of chaotic and hyperchaotic dynamical systems by suitable modulation of a control parameter. Their performances are improved with respect to: (i) robustness, (ii) rate of convergences, (iii) reduction of waiting time, (iv) reduction of noise sensitivity. These features are analytically investigated, the achievements are rigorously proved and supported by numerical simulations. The proposed methods result successful for stabilizing unstable periodic orbits in some classical discrete maps like 1-D logistic and standard 2-D Henon, but also in the hyperchaotic generalized n-D Henon-like maps.
引用
收藏
页码:419 / 439
页数:21
相关论文
共 36 条
[1]  
[Anonymous], 1995, DISCRETE TIME CONTRO
[2]  
Aramata R., 2017, 2017 56 ANN C SOC IN, DOI [10.23919/SICE. 2017.8105584, DOI 10.23919/SICE.2017.8105584]
[3]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[4]  
das Chagas T. Pereira, 2013, STABILIZATION PERIOD
[5]   LIMITATIONS OF ROBUST STABILITY OF A LINEAR DELAYED FEEDBACK CONTROL [J].
Dmitrishin, D. ;
Hagelstein, P. ;
Khamitova, A. ;
Stokolos, A. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) :148-157
[6]  
Dong XN., 1998, From chaos to order: Perspectives, methodologies, and applications, DOI [10.1142/3033, DOI 10.1142/3033]
[7]   NEW METHOD FOR STABILIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC SYSTEMS [J].
GALIAS, Z .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (01) :281-295
[8]  
Hellen E., 2010, ARXIVABS08072637V3
[9]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[10]   Act-and-wait control concept for discrete-time systems with feedback delay [J].
Insperger, T. ;
Stepan, G. .
IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (03) :553-557