Summability of product Jacobi expansions

被引:12
|
作者
Li, ZK [1 ]
Xu, Y
机构
[1] Captital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
product Jacobi polynomials; summability; several variables;
D O I
10.1006/jath.2000.3455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Orthogonal expansions in product Jacobi polynomials with respect to the weight function W alpha,beta(x)= Pi(j=1)(d) (1 - x(j))(alpha j)(1 + x(j))(beta j) on [-1, 1](d) are studied. For alpha(j), beta(j) > -1 and alpha(j)+ beta(j) greater than or equal to -1, the Crsdro (C,delta) means of the product Jacobi expansion converge in the norm of LP(W-alpha. beta, [-1, 1](d)) , 1 less than or equal to p < infinity, and C([-1, 1]d) if delta > Sigma(j=1)(d) max {alpha(j), beta(j)} + d/2 + max {0, -Sigma(j=t)(d) min {alpha(j), beta(j)} - d+2/2}. Moreover, for alpha(j), beta(j) greater than or equal to - 1/2, the (C, delta) means define a positive linear operator if and only if delta greater than or equal to Sigma(i=1)(d) (alpha(i)+beta(i)) + 3d - 1. (C) 2000 Academic Press.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 50 条
  • [31] General methods of convergence and summability
    Francisco Javier García-Pacheco
    Ramazan Kama
    María del Carmen Listán-García
    Journal of Inequalities and Applications, 2021
  • [32] On Arithmetical Summability and Multiplier Sequences
    Taja Yaying
    Bipan Hazarika
    National Academy Science Letters, 2017, 40 : 43 - 46
  • [33] A Tauberian theorem for (A)(C, α) summability
    Erdem, Yilmaz
    Canak, Ibrahim
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (11) : 2920 - 2925
  • [34] On the summability of bivariate rational functions
    Chen, Shaoshi
    Singer, Michael F.
    JOURNAL OF ALGEBRA, 2014, 409 : 320 - 343
  • [35] Summability of general Fourier series
    Gogoladze, Larry
    Tsagareishvili, Vakhtang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 391 - 402
  • [36] A Study on Approximation of Conjugate of Functions Belonging to Lipschitz Class and Generalized Lipschitz Class by Product Summability Means of Conjugate Series of Fourier Series
    Nigam, Hare Krishna
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (02): : 275 - 287
  • [37] ON TAUBERIAN THEOREMS FOR (A, k) SUMMABILITY METHOD
    Canak, Ibrahim
    Totur, Umit
    Dik, Mehmet
    MATHEMATICA SLOVACA, 2011, 61 (06) : 993 - 1001
  • [38] A theorem for the (J, p) summability method
    Canak, I.
    Totur, U.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 220 - 228
  • [39] SUMMABILITY OF GENERAL ORTHONORMAL FOURIER SERIES
    Gogoladze, L.
    Tsagareishvili, V.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2015, 52 (04) : 511 - 536
  • [40] Summability in general Carleman ultraholomorphic classes
    Lastra, Alberto
    Malek, Stephane
    Sanz, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) : 1175 - 1206