Summability of product Jacobi expansions

被引:12
|
作者
Li, ZK [1 ]
Xu, Y
机构
[1] Captital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
product Jacobi polynomials; summability; several variables;
D O I
10.1006/jath.2000.3455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Orthogonal expansions in product Jacobi polynomials with respect to the weight function W alpha,beta(x)= Pi(j=1)(d) (1 - x(j))(alpha j)(1 + x(j))(beta j) on [-1, 1](d) are studied. For alpha(j), beta(j) > -1 and alpha(j)+ beta(j) greater than or equal to -1, the Crsdro (C,delta) means of the product Jacobi expansion converge in the norm of LP(W-alpha. beta, [-1, 1](d)) , 1 less than or equal to p < infinity, and C([-1, 1]d) if delta > Sigma(j=1)(d) max {alpha(j), beta(j)} + d/2 + max {0, -Sigma(j=t)(d) min {alpha(j), beta(j)} - d+2/2}. Moreover, for alpha(j), beta(j) greater than or equal to - 1/2, the (C, delta) means define a positive linear operator if and only if delta greater than or equal to Sigma(i=1)(d) (alpha(i)+beta(i)) + 3d - 1. (C) 2000 Academic Press.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 50 条
  • [21] Θ-summability of Fourier series
    Ferenc Weisz
    Acta Mathematica Hungarica, 2004, 103 : 139 - 176
  • [22] On Sequences Preserving Summability
    Sławomir Michalik
    Maria Suwińska
    Bożena Tkacz
    Results in Mathematics, 2025, 80 (4)
  • [23] Summability in topological spaces
    Cakalli, H.
    Khan, M. K.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 348 - 352
  • [24] General methods of convergence and summability
    Javier Garcia-Pacheco, Francisco
    Kama, Ramazan
    del Carmen Listan-Garcia, Maria
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [25] ABSOLUTE SUMMABILITY OF INFINITE SERIES
    ORHAN, C
    SARIGOL, MA
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1995, 105 (02): : 201 - 205
  • [26] On Arithmetical Summability and Multiplier Sequences
    Yaying, Taja
    Hazarika, Bipan
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2017, 40 (01): : 43 - 46
  • [27] On asymptotic formulae via summability
    Garrancho, P.
    Cardenas-Morales, D.
    Aguilera, F.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (10) : 2174 - 2180
  • [28] Summability of a Tchebysheff system of functions
    Abdikalikova, Z. T.
    Kalybay, A. A.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2010, 8 (01): : 87 - 102
  • [29] Abel summability in topological spaces
    Mehmet Ünver
    Monatshefte für Mathematik, 2015, 178 : 633 - 643
  • [30] Summability of alternating gap series
    Keating, JP
    Reade, JB
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 : 95 - 101