Summability of product Jacobi expansions

被引:12
作者
Li, ZK [1 ]
Xu, Y
机构
[1] Captital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
product Jacobi polynomials; summability; several variables;
D O I
10.1006/jath.2000.3455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Orthogonal expansions in product Jacobi polynomials with respect to the weight function W alpha,beta(x)= Pi(j=1)(d) (1 - x(j))(alpha j)(1 + x(j))(beta j) on [-1, 1](d) are studied. For alpha(j), beta(j) > -1 and alpha(j)+ beta(j) greater than or equal to -1, the Crsdro (C,delta) means of the product Jacobi expansion converge in the norm of LP(W-alpha. beta, [-1, 1](d)) , 1 less than or equal to p < infinity, and C([-1, 1]d) if delta > Sigma(j=1)(d) max {alpha(j), beta(j)} + d/2 + max {0, -Sigma(j=t)(d) min {alpha(j), beta(j)} - d+2/2}. Moreover, for alpha(j), beta(j) greater than or equal to - 1/2, the (C, delta) means define a positive linear operator if and only if delta greater than or equal to Sigma(i=1)(d) (alpha(i)+beta(i)) + 3d - 1. (C) 2000 Academic Press.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 25 条
[1]  
ASKEY R, 1968, AM J MATH, V91, P463
[2]  
Askey R., 1975, ORTHOGONAL POLYNOMIA
[3]  
Bailey WN., 1935, Generalized Hypergeometric Series
[4]   l-1 summability of multiple Fourier integrals and positivity [J].
Berens, H ;
Xu, Y .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 122 :149-172
[5]   Fejer means for multivariate Fourier series [J].
Berens, H ;
Xu, Y .
MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (03) :449-465
[6]  
BERENS H, IN PRESS L 1 RIESZ S
[7]  
CHANILLO S, 1993, MEM AM MATH SOC, V487
[8]   LITTLEWOOD-PALEY THEORY FOR JACOBI EXPANSIONS [J].
CONNETT, WC ;
SCHWARTZ, AL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 251 (JUL) :219-234
[9]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[10]   BANACH ALGEBRAS FOR JACOBI SERIES AND POSITIVITY OF A KERNEL [J].
GASPER, G .
ANNALS OF MATHEMATICS, 1972, 95 (02) :261-&