Fast Face Tracking-by-Detection Algorithm for Secure Monitoring

被引:6
作者
Su, Jia [1 ]
Gao, Lihui [1 ]
Li, Wei [1 ]
Xia, Yu [1 ]
Cao, Ning [2 ,3 ]
Wang, Ruichao [4 ]
机构
[1] Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
[2] Wuxi Vocat Coll Sci & Technol, Sch Internet Things & Software Technol, Wuxi 214028, Jiangsu, Peoples R China
[3] Chuzhou Univ, Sch Comp & Informat Engn, Chuzhou 239000, Peoples R China
[4] Univ Coll Dublin, Coll Social Sci & Law, Dublin 4, Ireland
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 18期
关键词
Internet of Things; secure monitoring; face tracking; tracking-by-detection; correlation filter; convolution neural network; OBJECT; NETWORKS;
D O I
10.3390/app9183774
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work proposes a fast face tracking-by-detection (FFTD) algorithm that can perform tracking, face detection and discrimination tasks. On the basis of using the kernelized correlation filter (KCF) as the basic tracker, multitask cascade convolutional neural networks (CNNs) are used to detect the face, and a new tracking update strategy is designed. The update strategy uses the tracking result modified by detector to update the filter model. When the tracker drifts or fails, the discriminator module starts the detector to correct the tracking results, which ensures the out-of-view object can be tracked. Through extensive experiments, the proposed FFTD algorithm is shown to have good robustness and real-time performance for video monitoring scenes.
引用
收藏
页数:17
相关论文
共 47 条
[1]  
[Anonymous], IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2017.324
[2]  
[Anonymous], ARXIV171200726
[3]  
[Anonymous], P EUR C COMP VIS FLO
[4]  
[Anonymous], P EUR C COMP VIS MUN
[5]  
[Anonymous], P EUR C COMP VIS FLO
[6]  
[Anonymous], ARXIV160605413
[7]  
[Anonymous], P IEEE INT C COMP VI
[8]  
[Anonymous], 2014, P BRIT MACH VIS C BM
[9]  
[Anonymous], IEEE T PATTERN ANAL
[10]  
[Anonymous], P EUR C COMP VIS AMS