LOCAL QUASI-LIKELIHOOD WITH A PARAMETRIC GUIDE

被引:30
作者
Fan, Jianqing [1 ]
Wu, Yichao [2 ]
Feng, Yang [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
Generalized linear model; local polynomial smoothing; parametric guide; quasi-likelihood method; GENERALIZED LINEAR-MODELS; NONPARAMETRIC REGRESSION; DENSITY-ESTIMATION; REDUCING VARIANCE; ESTIMATORS; SELECTION;
D O I
10.1214/09-AOS713
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generalized linear models and the quasi-likelihood method extend the ordinary regression models to accommodate more general conditional distributions of the response. Nonparametric methods need no explicit parametric specification, and the resulting model is completely determined by the data themselves. However, nonparametric estimation schemes generally have a slower convergence rate such as the local polynomial smoothing estimation of nonparametric generalized linear models studied in Fan, Heckman and Wand [J. Amer Statist. Assoc. 90 (1995) 141-150]. In this work, we propose a unified family of parametrically-guided nonparametric estimation schemes. This combines the merits of both parametric and nonparametric approaches and enables us to incorporate prior knowledge. Asymptotic results and numerical simulations demonstrate the improvement of our new estimation schemes over the original nonparametric counterpart.
引用
收藏
页码:4153 / 4183
页数:31
相关论文
共 24 条
[1]  
[Anonymous], LECT NOTES STAT
[2]  
[Anonymous], 2018, Generalized linear models
[3]   Reducing variance in univariate smoothing [J].
Cheng, Ming-Yen ;
Peng, Liang ;
Wu, Jyh-Shyang .
ANNALS OF STATISTICS, 2007, 35 (02) :522-542
[4]   Reducing variance in nonparametric surface estimation [J].
Cheng, MY ;
Hall, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 86 (02) :375-397
[5]   ASYMPTOTIC ANALYSIS OF PENALIZED LIKELIHOOD AND RELATED ESTIMATORS [J].
COX, DD ;
OSULLIVAN, F .
ANNALS OF STATISTICS, 1990, 18 (04) :1676-1695
[6]   LOCAL POLYNOMIAL KERNEL REGRESSION FOR GENERALIZED LINEAR-MODELS AND QUASI-LIKELIHOOD FUNCTIONS [J].
FAN, JQ ;
HECKMAN, NE ;
WAND, MP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :141-150
[7]   LOCAL LINEAR-REGRESSION SMOOTHERS AND THEIR MINIMAX EFFICIENCIES [J].
FAN, JQ .
ANNALS OF STATISTICS, 1993, 21 (01) :196-216
[8]  
FAN JQ, 1995, J ROY STAT SOC B, V57, P371
[9]   Local maximum likelihood estimation and inference [J].
Fan, JQ ;
Farmen, M ;
Gijbels, I .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :591-608
[10]  
GASSER T, 1985, J ROY STAT SOC B MET, V47, P238