Backlund transformation and multisoliton-like solutions for (2+1)-dimensional dispersive long wave equations

被引:0
作者
Zhang, JF [1 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
[2] Zhejiang Univ Technol, Res Ctr Engn Sci, Hangzhou 310032, Peoples R China
关键词
Backlund transformation; homogeneous balance method; soliton solution; (2+1)-dimensional dispersive long wave equations;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Backlund transformation of the (2+1)-dimensional dispersive long wave equations is derived by using the developed homogeneous balance method. by means of the Backlund transformation, the new multisoliton-like solution and other two types of exact solutions to these equations are constructed.
引用
收藏
页码:577 / 580
页数:4
相关论文
共 8 条
[1]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[2]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[3]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[4]   PAINLEVE TEST FOR THE INTEGRABLE DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS [J].
LOU, S .
PHYSICS LETTERS A, 1993, 176 (1-2) :96-100
[5]  
LOU SY, 1995, MATH METHOD APPL SCI, V18, P789, DOI 10.1002/mma.1670181004
[6]  
LOU SY, 1994, J PHYS A, V27, P3225
[7]   GROUP THEORETICAL-ANALYSIS OF DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS [J].
PAQUIN, G ;
WINTERNITZ, P .
PHYSICA D, 1990, 46 (01) :122-138
[8]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172