Epileptic Seizure Detection Using Multi-Channel EEG Wavelet Power Spectra and 1-D Convolutional Neural Networks

被引:0
作者
Sharan, Roneel, V [1 ]
Berkovsky, Shlomo [1 ]
机构
[1] Macquarie Univ, Australian Inst Hlth Innovat, Sydney, NSW 2109, Australia
来源
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20 | 2020年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The use of feature extraction and selection from EEG signals has shown to be useful in the detection of epileptic seizure segments. However, these traditional methods have more recently been surpassed by deep learning techniques, forgoing the need for complex feature engineering. This work aims to extend the conventional approach of epileptic seizure detection utilizing raw power spectra of EEG signals and convolutional neural networks (CNN). The proposed technique utilizes wavelet transform to compute the frequency characteristics of multi-channel EEG signals. The EEG signals are divided into 2 second epochs and frequency spectrum up to a cutoff frequency of 45 Hz is computed. This multi-channel raw spectral data forms the input to a one-dimensional CNN (1-D CNN). Spectral data from the current, previous, and next epochs is utilized for predicting the label of the current epoch. The performance of the technique is evaluated using a dataset of EEG signals from 24 cases. The proposed method achieves an accuracy of 97.25% in detecting epileptic seizure segments. This result shows that multi-channel EEG wavelet power spectra and 1-D CNN are useful in detecting epileptic seizures.
引用
收藏
页码:545 / 548
页数:4
相关论文
共 26 条
[1]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[2]   Improvement in quality of life after initiation of lamotrigine therapy in patients with epilepsy in a naturalistic treatment setting [J].
Allain, Herve ;
Schueck, Stephane ;
Nachit-Ouinekh, Fatima ;
Plouin, Perrine ;
Brunon, Anne-Marie ;
Boulliat, Jacques ;
Mercier, Florence ;
Slama, Alain ;
Baulac, Michel ;
El Hasnaoui, Abdelkader .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2007, 16 (02) :173-184
[3]  
[Anonymous], 2015, ACS SYM SER
[4]  
[Anonymous], 2010, P 27 INT C MACH LEAR, DOI 10.5555/3104322.3104425
[5]  
Bishop CM., 2006, Springer Google Schola, V2, P1122, DOI [10.5555/1162264, DOI 10.18637/JSS.V017.B05]
[6]  
Bromfield E.B., 2007, Neurology and Clinical Neuroscience, P707
[7]   Efficient Epileptic Seizure Prediction Based on Deep Learning [J].
Daoud, Hisham ;
Bayoumi, Magdy A. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (05) :804-813
[8]  
de Chazal P, 2016, IEEE ENG MED BIO, P3203, DOI 10.1109/EMBC.2016.7591410
[9]   Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques [J].
Fergus, Paul ;
Hignett, David ;
Hussain, Abir ;
Al-Jumeily, Dhiya ;
Abdel-Aziz, Khaled .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[10]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220