Spatially multiplexed dark-field microspectrophotometry for nanoplasmonics

被引:26
作者
Pini, V. [1 ]
Kosaka, P. M. [1 ]
Ruz, J. J. [1 ]
Malvar, O. [1 ]
Encinar, M. [1 ]
Tamayo, J. [1 ]
Calleja, M. [1 ]
机构
[1] CSIC, CNM, Inst Microelect Madrid, PTM, Isaac Newton 8, E-28760 Madrid, Spain
基金
欧洲研究理事会;
关键词
SURFACE-PLASMON RESONANCE; ENHANCED RAMAN-SCATTERING; GOLD NANORODS; OPTICAL-PROPERTIES; FANO RESONANCE; NANOPARTICLES; TIME; NANOSTRUCTURES; IMMUNOASSAY; SUBSTRATE;
D O I
10.1038/srep22836
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monitoring the effect of the substrate on the local surface plasmon resonance (LSPR) of metallic nanoparticles is key for deepening our understanding of light-matter interactions at the nanoscale. This coupling gives rise to shifts of the LSPR as well as changes in the scattering pattern shape. The problem requires of high-throughput techniques that present both high spatial and spectral resolution. We present here a technique, referred to as Spatially Multiplexed Micro-Spectrophotometry (SMMS), able to perform polarization-resolved spectral and spatial analysis of the scattered light over large surface areas. The SMMS technique provides three orders of magnitude faster spectroscopic analysis than conventional dark-field microspectrophotometry, with the capability for mapping the spatial distribution of the scattered light intensity with lateral resolution of 40 nm over surface areas of 0.02 mm(2). We show polarization-resolved dark-field spectral analysis of hundreds of gold nanoparticles deposited on a silicon surface. The technique allows determining the effect of the substrate on the LSPR of single nanoparticles and dimers and their scattering patterns. This is applied for rapid discrimination and counting of monomers and dimers of nanoparticles. In addition, the diameter of individual nanoparticles can be rapidly assessed with 1 nm accuracy.
引用
收藏
页数:10
相关论文
共 59 条
[51]  
Tetard L, 2015, NAT NANOTECHNOL, V10, P870, DOI [10.1038/nnano.2015.168, 10.1038/NNANO.2015.168]
[52]   Plasmomechanical Resonators Based on Dimer Nanoantennas [J].
Thijssen, Rutger ;
Kippenberg, Tobias J. ;
Polman, Albert ;
Verhagen, Ewold .
NANO LETTERS, 2015, 15 (06) :3971-3976
[53]   Plasmonic Whispering Gallery Cavities As Optical Nanoantennas [J].
Vesseur, Ernst Jan R. ;
Polman, Albert .
NANO LETTERS, 2011, 11 (12) :5524-5530
[54]   A Magnetoplasmonic Imaging Agent for Copper(I) with Dual Response by MRI and Dark Field Microscopy [J].
Weitz, Evan A. ;
Lewandowski, Cutler ;
Smolensky, Eric D. ;
Marjanska, Malgorzata ;
Pierre, Valerie C. .
ACS NANO, 2013, 7 (07) :5842-5849
[55]   Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substrates [J].
Wu, Yanpeng ;
Nordlander, Peter .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (16) :7302-7307
[56]   Tunable Plasmonic Coupling in Self-Assembled Binary Nanocrystal Super lattices Studied by Correlated Optical Microspectrophotometry and Electron Microscopy [J].
Ye, Xingchen ;
Chen, Jun ;
Diroll, Benjamin T. ;
Murray, Christopher B. .
NANO LETTERS, 2013, 13 (03) :1291-1297
[57]   Plasmonic photocatalysis [J].
Zhang, Xuming ;
Chen, Yu Lim ;
Liu, Ru-Shi ;
Tsai, Din Ping .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (04)
[58]  
Zijlstra P, 2012, NAT NANOTECHNOL, V7, P379, DOI [10.1038/NNANO.2012.51, 10.1038/nnano.2012.51]
[59]   Quantum Plasmonics: Optical Properties and Tunability of Metallic Nanorods [J].
Zuloaga, Jorge ;
Prodan, Emil ;
Nordlander, Peter .
ACS NANO, 2010, 4 (09) :5269-5276