Development of pre-conceptual ITER-type ICRF antenna design for DEMO

被引:14
作者
Bobkov, V. [1 ]
Usoltceva, M. [1 ]
Faugel, H. [1 ]
Kostic, A. [1 ]
Maggiora, R. [2 ]
Milanesio, D. [2 ]
Maquet, V. [3 ]
Ochoukov, R. [1 ]
Tierens, W. [1 ]
Zeus, F. [1 ]
Zhang, W. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Politecn Torino, Turin, Italy
[3] TEC Partner, Plasma Phys Lab, ERM KMS, B-1000 Brussels, Belgium
关键词
ICRF antenna; DEMO; DEMO heating system; ICRF heating; SCRAPE-OFF LAYER;
D O I
10.1088/1741-4326/abe7d0
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
ICRF antenna development for DEMO for the pre-conceptual phase is carried out by merging the existing knowledge about multi-strap ITER, JET and ASDEX upgrade antennas. Many aspects are taken over and adapted to DEMO, including the mechanical design and RF performance optimization strategies. The minimization of ICRF-specific plasma-wall interactions is aimed at by optimizing the feeding power balance, a technique already proven in practice. Technological limits elaborated for the components of ITER ICRF system serve as a guideline in the current design process. Several distinctive aspects, like antenna mounting, integration with the neighboring components or adaptation for neutron environment, are tackled individually for DEMO.
引用
收藏
页数:14
相关论文
共 15 条
[1]   Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor [J].
Bobkov, V ;
Aguiam, D. ;
Bilato, R. ;
Brezinsek, S. ;
Colas, L. ;
Czarnecka, A. ;
Dumortier, P. ;
Dux, R. ;
Faugel, H. ;
Funfgelder, H. ;
Jacquetg, Ph ;
Kaltenbach, A. ;
Krivska, A. ;
Klepper, C. C. ;
Lerche, E. ;
Lin, Y. ;
Milanesio, D. ;
Maggiora, R. ;
Monakhovg, I ;
Neu, R. ;
Noterdaeme, J-M ;
Ochoukov, R. ;
Piitterich, Th ;
Reinke, M. ;
Tierens, W. ;
Tuccilo, A. ;
Tudisco ;
Van Eester, D. ;
Wright, J. ;
Wukitchk, S. ;
Zhang, W. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :131-140
[2]   Making ICRF power compatible with a high-Z wall in the ASDEX Upgrade [J].
Bobkov, V. ;
Aguiam, D. ;
Bilato, R. ;
Brezinsek, S. ;
Colas, L. ;
Faugel, H. ;
Fuenfgelder, H. ;
Herrmann, A. ;
Jacquot, J. ;
Kallenbach, A. ;
Milanesio, D. ;
Maggiora, R. ;
Neu, R. ;
Noterdaeme, J-M ;
Ochoukov, R. ;
Potzel, S. ;
Puetterich, T. ;
Silva, A. ;
Tierens, W. ;
Tuccilo, A. ;
Tudisco, O. ;
Wang, Y. ;
Yang, Q. ;
Zhang, W. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[3]   First results with 3-strap ICRF antennas in ASDEX Upgrade [J].
Bobkov, V. ;
Braun, F. ;
Dux, R. ;
Herrmann, A. ;
Faugel, H. ;
Fuenfgelder, H. ;
Kallenbach, A. ;
Neu, R. ;
Noterdaeme, J. -M. ;
Ochoukov, R. ;
Puetterich, Th. ;
Tuccilo, A. ;
Tudisco, O. ;
Wang, Y. ;
Yang, Q. .
NUCLEAR FUSION, 2016, 56 (08)
[4]   Initial port integration concept for EC and NB systems in EU DEMO tokamak [J].
Franke, Thomas ;
Agostinetti, Piero ;
Bachmann, Christian ;
Bruschi, Alessandro ;
Carr, Matthew ;
Cismondi, Fabio ;
Cufar, Aljaz ;
de Esch, H. P. L. ;
Federici, Gianfranco ;
den Harder, Niek ;
Garavaglia, Saul ;
Grossetti, Giovanni ;
Granucci, Gustavo ;
Meakins, Alex ;
Moro, Alessandro ;
Mozzillo, Rocco ;
Sartori, Emanuele ;
Siccinio, Mattia ;
Sonato, Piergiorgio ;
Strauss, Dirk ;
Minh Quang Tran ;
Valentine, Alex ;
Zheng, Shanliang .
FUSION ENGINEERING AND DESIGN, 2019, 146 :1642-1646
[5]   Maximization of ICRF power by SOL density tailoring with local gas injection [J].
Jacquet, P. ;
Goniche, M. ;
Bobkov, V. ;
Lerche, E. ;
Pinsker, R. I. ;
Pitts, A. ;
Zhang, W. ;
Colas, L. ;
Hosea, J. ;
Moriyama, S. ;
Wang, S-J. ;
Wukitch, S. ;
Zhang, X. ;
Bilato, R. ;
Bufferand, H. ;
Guimarais, L. ;
Faugel, H. ;
Hanson, G. R. ;
Kocan, M. ;
Monakhov, I. ;
Noterdaeme, J-M. ;
Petrzilka, V. ;
Shaw, A. ;
Stepanov, I. ;
Sips, A. C. C. ;
Van Eester, D. ;
Wauters, T. .
NUCLEAR FUSION, 2016, 56 (04)
[6]   2D and 3D modeling of wave propagation in cold magnetized plasma near the Tore Supra ICRH antenna relying on the perfecly matched layer technique [J].
Jacquot, J. ;
Colas, L. ;
Clairet, F. ;
Goniche, M. ;
Heuraux, S. ;
Hillairet, J. ;
Lombard, G. ;
Milanesio, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (11)
[7]   Physics and applications of three-ion ICRF scenarios for fusion research [J].
Kazakov, Ye O. ;
Ongena, J. ;
Wright, J. C. ;
Wukitch, S. J. ;
Bobkov, V ;
Garcia, J. ;
Kiptily, V. G. ;
Mantsinen, M. J. ;
Nocente, M. ;
Schneider, M. ;
Weisen, H. ;
Baranov, Y. ;
Baruzzo, M. ;
Bilato, R. ;
Chomiczewska, A. ;
Coelho, R. ;
Craciunescu, T. ;
Crombe, K. ;
Dreval, M. ;
Dumont, R. ;
Dumortier, P. ;
Durodie, F. ;
Eriksson, J. ;
Fitzgerald, M. ;
Galdon-Quiroga, J. ;
Gallart, D. ;
Garcia-Munoz, M. ;
Giacomelli, L. ;
Giroud, C. ;
Gonzalez-Martin, J. ;
Hakola, A. ;
Jacquet, P. ;
Johnson, T. ;
Kappatou, A. ;
Keeling, D. ;
King, D. ;
Kirov, K. K. ;
Lamalle, P. ;
Lennholm, M. ;
Lerche, E. ;
Maslov, M. ;
Mazzi, S. ;
Menmuir, S. ;
Monakhov, I ;
Nabais, F. ;
Nave, M. F. F. ;
Ochoukov, R. ;
Polevoi, A. R. ;
Pinches, S. D. ;
Plank, U. .
PHYSICS OF PLASMAS, 2021, 28 (02)
[8]   TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas [J].
Lancellotti, V. ;
Milanesio, D. ;
Maggiora, R. ;
Vecchi, G. ;
Kyrytsya, V. .
NUCLEAR FUSION, 2006, 46 (07) :S476-S499
[9]   Coaxial and surface mode excitation by an ICRF antenna in large machines like DEMO and ITER [J].
Messiaen, A. ;
Maquet, V. .
NUCLEAR FUSION, 2020, 60 (07)
[10]   Figure of merit for divertor protection in the preliminary design of the EU-DEMO reactor [J].
Siccinio, M. ;
Federici, G. ;
Kembleton, R. ;
Lux, H. ;
Maviglia, F. ;
Morris, J. .
NUCLEAR FUSION, 2019, 59 (10)