Dominating Sets in Projective Planes

被引:2
作者
Heger, Tamas [1 ]
Nagy, Zoltan Lorant [1 ]
机构
[1] MTA ELTE Geometr & Algebra Combinator Res Grp, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
关键词
projective plane; domination; dominating set; blocking set; stability; BLOCKING SETS; BAER SUBPLANES; STABILITY;
D O I
10.1002/jcd.21527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe small dominating sets of the incidence graphs of finite projective planes by establishing a stability result that shows that dominating sets are strongly related to blocking and covering sets. Our main result states that if a dominating set in a projective plane of order q > 81 is smaller than 2q + 2[root q] + 2 ( i. e., twice the size of a Baer subplane), then it contains either all but possibly one points of a line or all but possibly one lines through a point. Furthermore, we completely characterize dominating sets of size at most 2q + root q + 1. In Desarguesian planes, we could rely on strong stability results on blocking sets to show that if a dominating set is sufficiently smaller than 3q, then it consists of the union of a blocking set and a covering set apart from a few points and lines. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:293 / 309
页数:17
相关论文
共 21 条
  • [1] [Anonymous], 1998, Projective Geometry: From Foundations to Applications
  • [2] Ball S., 1996, FINITE FIELDS APPL, V2, P125
  • [3] ON MINIMAL BLOCKING SETS
    BIERBRAUER, J
    [J]. ARCHIV DER MATHEMATIK, 1980, 35 (04) : 394 - 400
  • [4] Blokhuis A, 1996, BOLYAI SOC MATH STUD, V2, P133
  • [5] Lacunary polynomials, multiple blocking sets and Baer subplanes
    Blokhuis, A
    Storme, L
    Szonyi, T
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 321 - 332
  • [6] Covering all points except one
    Blokhuis, A.
    Brouwer, A. E.
    Szonyi, T.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (01) : 59 - 66
  • [7] On q-analogues and stability theorems
    Blokhuis A.
    Brouwer A.
    Szonyi T.
    Weiner Z.
    [J]. Journal of Geometry, 2011, 101 (1-2) : 31 - 50
  • [8] BLOCKING NUMBER OF AN AFFINE SPACE
    BROUWER, AE
    SCHRIJVER, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (02) : 251 - 253
  • [9] BAER SUBPLANES AND BLOCKING SETS
    BRUEN, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (02) : 342 - &
  • [10] Bruen AA., 1977, Geom. Dedicata, V6, P193, DOI DOI 10.1007/BF00181460