Poly(ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties

被引:94
作者
Hwang, Yongsung [1 ,2 ]
Zhang, Chao [1 ]
Varghese, Shyni [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
关键词
SYNTHETIC EXTRACELLULAR MATRICES; TISSUE; HYDROGELS; ACID); ADHESION; PHASE;
D O I
10.1039/b917142h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the synthesis and characterization of interconnected macroporous network structures of poly(ethylene glycol) (PEG) using cryogelation techniques. Novel monolithic networks containing a gradient of pore size in a layered fashion were created from a single precursor by manipulating their polymerization kinetics. Maintaining conditions that promote the rate of gelation compared to that of the nucleation of ice crystals leads to formation of either conventional hydrogel-like network structures or continuous heterogeneous networks containing layers of hydrogel-like and cryogel-like microstructures. In contrast, conditions promoting a faster rate of the nucleation of ice crystals compared to rate of gelation result in cryogels with a nearly homogeneous interconnected macroporous network. The rates of polymerization and nucleation of ice crystals were altered using a number of different parameters such as concentration of initiator, freezing temperature, and degree of supercooling. Compared to conventional hydrogels, the cryogels exhibit higher stress and strain at break; their mechanical and equilibrium swelling properties show a strong correlation with the network microstructure. Cell viability studies suggest no detrimental effect of these scaffolds on cell attachment and their distribution. Furthermore, a time dependent increase in chondrocyte proliferation was observed in cryogels over a long period of culture.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 29 条
[1]   Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent [J].
Arvidsson, P ;
Plieva, FM ;
Lozinsky, VI ;
Galaev, IY ;
Mattiasson, B .
JOURNAL OF CHROMATOGRAPHY A, 2003, 986 (02) :275-290
[2]   SYNTHESIS OF POROUS HYDROGEL STRUCTURES BY POLYMERIZING THE CONTINUOUS-PHASE OF A MICROEMULSION [J].
BENNETT, DJ ;
BURFORD, RP ;
DAVIS, TP ;
TILLEY, HJ .
POLYMER INTERNATIONAL, 1995, 36 (03) :219-226
[3]   Thermoreversible hydrogel based on radiation induced copolymerisation of poly(N-isopropyl acrylamide) and poly(ethylene oxide) [J].
Bhalerao, VS ;
Varghese, S ;
Lele, AK ;
Badiger, MV .
POLYMER, 1998, 39 (11) :2255-2260
[4]   Cryogelation for preparation of novel biodegradable tissue-engineering scaffolds [J].
Boelgen, Nimet ;
Plieva, Fatima ;
Galaev, Igor Yu ;
Mattiasson, Bo ;
Piskin, Erhan .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2007, 18 (09) :1165-1179
[5]   Three-Dimensional Ingrowth of Bone Cells Within Biodegradable Cryogel Scaffolds in Bioreactors at Different Regimes [J].
Bolgen, Nimet ;
Yang, Ying ;
Korkusuz, Peter ;
Guzel, Elif ;
El Haj, Alicia J. ;
Piskin, Erhan .
TISSUE ENGINEERING PART A, 2008, 14 (10) :1743-1750
[6]  
Bryant S J, 1999, Biomed Sci Instrum, V35, P309
[7]   Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Chowdhury, TT ;
Lee, DA ;
Bader, DL ;
Anseth, KS .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (03) :407-417
[8]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72
[9]  
Chen J, 1999, J MACROMOL SCI PURE, VA36, P917
[10]   Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel [J].
Duan, SF ;
Zhu, W ;
Yu, L ;
Ding, JD .
CHINESE SCIENCE BULLETIN, 2005, 50 (11) :1093-1096