MA360: MULTI-AGENT DEEP REINFORCEMENT LEARNING BASED LIVE 360-DEGREE VIDEO STREAMING ON EDGE

被引:15
作者
Ban, Yixuan [1 ]
Zhang, Yuanxing [1 ]
Zhang, Haodan [1 ]
Zhang, Xinggong [1 ]
Guo, Zongming [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
来源
2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2020年
基金
国家重点研发计划;
关键词
360-degree video; live video streaming; adaptive streaming; multi-agent deep reinforcement learning;
D O I
10.1109/icme46284.2020.9102836
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The mobile edge caching has made video service providers deliver live 360-degree videos worldwide. However, these services still suffer from the huge network traffic on the core network due to the spherical nature and the diverse requests generated from large user populations. It is challenging to optimize the Quality of Experience (QoE) and the bandwidth consumption simultaneously under the significant number of users as well as dynamic network and playback status. In this paper, we propose a Multi-Agent deep reinforcement learning based 360-degree video streaming system, named MA360, to tackle this multi-user live 360-degree video streaming problem in the context of the edge cache network. Specifically, MA360 employs the Mean Field Actor-Critic (MFAC) algorithm to make clients collaboratively and distributively request tiles aiming at maximizing the overall QoE while minimizing the total bandwidth consumption. Experiments over real-world datasets show that MA360 can improve the QoE while significantly reducing the bandwidth consumption compared with several state-of-the-art edge-assisted 360-degree video streaming strategies.
引用
收藏
页数:6
相关论文
共 12 条
[1]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[2]  
Gopalakrishnan V, 2016, PROC WORKSHOP ALL TH, P1, DOI DOI 10.1145/2980055.2980056
[3]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[4]  
Jiang JC, 2017, PROCEEDINGS OF NSDI '17: 14TH USENIX SYMPOSIUM ON NETWORKED SYSTEMS DESIGN AND IMPLEMENTATION, P393
[5]   QoE-Driven Mobile Edge Caching Placement for Adaptive Video Streaming [J].
Li, Chenglin ;
Toni, Laura ;
Zou, Junni ;
Xiong, Hongkai ;
Frossard, Pascal .
IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (04) :965-984
[6]  
Liu C., 2018, SERVER SIDE RATE ADA
[7]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[8]  
Riiser H., 2013, P 4 ACM MULT SYST C, P114
[9]  
Stockhammer T., 2011, P 2 ANN ACM SIGMM C, P133, DOI DOI 10.1145/1943552.1943572
[10]   A Dataset for Exploring User Behaviors in VR Spherical Video Streaming [J].
Wu, Chenglei ;
Tan, Zhihao ;
Wang, Zhi ;
Yang, Shiqiang .
PROCEEDINGS OF THE 8TH ACM MULTIMEDIA SYSTEMS CONFERENCE (MMSYS'17), 2017, :193-198