W-semisymmetric generalized Sasakian-space-forms

被引:5
作者
Chaubey, Sudhakar Kumar [1 ]
Yadav, Sunil Kumar [2 ]
机构
[1] Shinas Coll Technol, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[2] Poornima Coll Engn, Dept Math, RIICO, Inst Area, ISI-6, Jaipur 302022, Rajasthan, India
关键词
Generalized Sasakian-space-forms; Ricci solitons; semisymmetric spaces; different curvature tensors; concircular vector fields; PROJECTIVE CURVATURE TENSOR;
D O I
10.1515/apam-2018-0032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We set a definition of a (0, 2)-type tensor on the generalized Sasakian-space-forms. The necessary and sufficient conditions for W-semisymmetric generalized Sasakian-space forms are studied. Certain results of the Ricci solitons, the Killing vector fields and the closed 1-form on the generalized Sasakian-space-forms are derived. We also verify our results by taking non-trivial examples of the generalized Sasakian-space-forms.
引用
收藏
页码:427 / 436
页数:10
相关论文
共 32 条
  • [1] Generalized Sasakian-space-forms
    Alegre, P
    Blair, DE
    Carriazo, A
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2004, 141 (1) : 157 - 183
  • [2] Generalized Sasakian Space Forms and Conformal Changes of the Metric
    Alegre, Pablo
    Carriazo, Alfonso
    [J]. RESULTS IN MATHEMATICS, 2011, 59 (3-4) : 485 - 493
  • [3] SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE FORMS
    Alegre, Pablo
    Carriazo, Alfonso
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 923 - 941
  • [4] Structures on generalized Sasakian-space-forms
    Alegre, Pablo
    Carriazo, Alfonso
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) : 656 - 666
  • [5] [Anonymous], 1988, Contemp Math, DOI DOI 10.1090/CONM/071/954419
  • [6] [Anonymous], 2010, Difer. Geom. Dyn. Syst
  • [7] [Anonymous], 2003, RICCI FLOW SURG 3 MA
  • [8] Blair D. E., 1977, Tohoku Math. J., V29, P319
  • [9] Blair DE., 1976, Contact manifolds in Riemannian geometry
  • [10] CURVATURE, SPHERE THEOREMS, AND THE RICCI FLOW
    Brendle, Simon
    Schoen, Richard
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 48 (01) : 1 - 32