A demonstration of spatial heterodyne spectrometers for remote LIBS, Raman spectroscopy, and 1D imaging

被引:11
作者
Fessler, K. Alicia Strange [1 ]
Waldron, Abigail [2 ]
Colon, Arelis [2 ]
Carter, J. Chance [3 ]
Angel, S. Michael [2 ]
机构
[1] Savannah River Natl Lab, Bldg 999-2W,Room C02, Aiken, SC 29808 USA
[2] Univ South Carolina, Dept Chem & Biochem, 631 Sumter St, Columbia, SC 29208 USA
[3] Lawrence Livermore Natl Lab, Mat Sci Div, 7000 East Ave, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Remote Raman; Remote LIBS; Monolithic Raman spectrometer; Spatial heterodyne spectrometer; Spatial heterodyne Raman spectrometer; Raman; LIBS; LASER-INDUCED BREAKDOWN; FIELD; SCATTERING; SENSOR;
D O I
10.1016/j.sab.2021.106108
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Three spatial heterodyne Raman spectrometers, one free standing, the others monolithic, have been used for remote Raman and LIBS for samples at a distance of 4.5 m and 1D Raman imaging. The wide area measurement capability of the SHS was demonstrated and shown to reduce sample photodegradation in the case of Raman, using large laser spots on the sample, without loss of signal or decreased spectral resolution. 1D Raman imaging using a free standing SHRS and a monolithic SHRS was demonstrated and shown to provide better signal-to-noise ratio (SNR) spectra for heterogenous samples than spectra measured without imaging. Improved SNR using 1D imaging is the result of spatial separation of the signal from different areas of the sample, which reduces the contribution of shot noise from stronger scattering sample regions to more weakly scattering adjacent sample regions. For 1D imaging of adjacent samples, within the field-of-view (FOV) of the spectrometer, the SNR improved up to four times, with no loss of spectral resolution or spectral range, and a spatial resolution of 280 mu m was demonstrated for samples located at 4.5 m from the spectrometer.
引用
收藏
页数:10
相关论文
共 51 条
  • [1] Measurement of the absolute Raman scattering cross sections of sulfur and the standoff Raman detection of a 6-mm-thick sulfur specimen at 1500 m
    Aggarwal, R. L.
    Farrar, L. W.
    Polla, D. L.
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (03) : 461 - 464
  • [2] Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array
    Allen, Ashley
    Waldron, Abigail
    Ottaway, Joshua M.
    Chance Carter, J.
    Michael Angel, S.
    [J]. APPLIED SPECTROSCOPY, 2020, 74 (08) : 921 - 931
  • [3] Miniature spatial heterodyne spectrometer for remote laser induced breakdown and Raman spectroscopy using Fresnel collection optics
    Allen, Ashley
    Angel, S. Michael
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2018, 149 : 91 - 98
  • [4] Remote Raman Spectroscopy for Planetary Exploration: A Review
    Angel, S. Michael
    Gomer, Nathaniel R.
    Sharma, Shiv K.
    Mckay, Chris
    [J]. APPLIED SPECTROSCOPY, 2012, 66 (02) : 137 - 150
  • [5] REMOTE-RAMAN SPECTROSCOPY AT INTERMEDIATE RANGES USING LOW-POWER CW LASERS
    ANGEL, SM
    KULP, TJ
    VESS, TM
    [J]. APPLIED SPECTROSCOPY, 1992, 46 (07) : 1085 - 1091
  • [6] [Anonymous], 2021, SPECTROCHIM ACTA B, V179
  • [7] Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram
    Barnett, Patrick D.
    Strange, K. Alicia
    Angel, S. Michael
    [J]. APPLIED SPECTROSCOPY, 2017, 71 (06) : 1380 - 1386
  • [8] Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector
    Barnett, Patrick D.
    Angel, S. Michael
    [J]. APPLIED SPECTROSCOPY, 2017, 71 (05) : 988 - 995
  • [9] Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics
    Barnett, Patrick D.
    Lamsal, Nirmal
    Angel, S. Michael
    [J]. APPLIED SPECTROSCOPY, 2017, 71 (04) : 583 - 590
  • [10] CHOPELAS A, 1991, AM MINERAL, V76, P1101