Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems

被引:6
作者
Celka, P [1 ]
Bershad, NJ
Vesin, JM
机构
[1] Univ Queensland, Signal Proc Res Ctr, Brisbane, Qld, Australia
[2] Univ Calif Irvine, Dept Elect Commun Engn, Irvine, CA 92717 USA
[3] Swiss Fed Inst Technol, Dept Elect Engn, Signal Proc Lab, CH-1015 Lausanne, Switzerland
关键词
adaptive stochastic gradient; nonlinear system identification; polynomial Wiener models;
D O I
10.1109/78.845945
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observations. The analysis includes 1) bounds and a recursion for the misadjustment matrix and 2) algorithm mean square stability regions. A diagonal step-size matrix for the adaptive coefficients is introduced to speed up convergence. The theoretical predictions of the fluctuation analysis are supported bg Monte Carlo simulations.
引用
收藏
页码:1820 / 1825
页数:6
相关论文
共 17 条
[1]  
Ahn SS, 1996, IEEE T SIGNAL PROCES, V44, P3008, DOI 10.1109/78.553475
[2]  
[Anonymous], ADAPTIVE FILTER THEO, DOI DOI 10.1109/ISCAS.2017.8050871
[3]   Stochastic analysis of gradient adaptive identification of nonlinear systems with memory for Gaussian data and noisy input and output measurements [J].
Bershad, NJ ;
Celka, P ;
Vesin, JM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (03) :675-689
[4]  
BERSHAD NJ, 1998, ICASSP 98 SEATTL WA
[5]  
BILLINGS SA, 1977, ELECTRON LETT, V17, P502
[6]   IDENTIFICATION OF A PARTICULAR NONLINEAR TIME-SERIES SYSTEM [J].
BRILLINGER, DR .
BIOMETRIKA, 1977, 64 (03) :509-515
[7]  
CELKA P, 1999, P ICASSP, V1
[8]  
CELKA P, 1999, P ISSPA BRISB AUSTR, V2, P1001
[9]   Exact expectation analysis of the LMS adaptive filter [J].
Douglas, SC ;
Pan, WM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (12) :2863-2871
[10]   NONPARAMETRIC IDENTIFICATION OF WIENER SYSTEMS [J].
GREBLICKI, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) :1487-1493