Estimates for representation numbers of quadratic forms

被引:24
作者
Blomer, Valentin
Granville, Andrew
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.1215/S0012-7094-06-13522-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a primitive positive integral binary quadratic form of discriminant - D, and let r(f) (n) be the number of representations of n by f up to automorphisms of f. In this article, we give estimates and asymptoticsfor the quantity Sigma(n <= x) r(f) (n)beta for all beta >= 0 and uniformly in D = o(x). As a consequence, we get more-precise estimates for the number of integers which can be written as the sum of two powerful numbers.
引用
收藏
页码:261 / 302
页数:42
相关论文
共 13 条
[1]   THE RELATION BETWEEN THE CLASS NUMBER AND THE DISTRIBUTION OF PRIMES [J].
ANKENY, NC ;
CHOWLA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (06) :775-776
[2]  
BERNAYS P, 1912, THESIS G AUGUST U GO
[3]   Binary quadratic forms with large discriminants and sums of two squareful numbers II [J].
Blomer, V .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 :69-84
[4]   On cusp forms associated with binary theta series [J].
Blomer, V .
ARCHIV DER MATHEMATIK, 2004, 82 (02) :140-146
[5]  
Blomer V, 2004, J REINE ANGEW MATH, V569, P213
[6]  
BRUDERN J, 1995, EINFUHRUNG ANAL ZAHL
[7]  
Cox D. A., 1989, PRIMES FORM X2 NY2 F
[8]  
ERDOS P, 1980, ACTA SCI MATH, V42, P237
[9]  
Fogels E., 1961, ACTA ARITH, V7, P87
[10]   ON THE NUMBER OF POSITIVE INTEGERS GREATER-THAN-OR-EQUAL-TO X AND FREE OF PRIME FACTORS GREATER-THAN Y [J].
HILDEBRAND, A .
JOURNAL OF NUMBER THEORY, 1986, 22 (03) :289-307