Singular and Superlinear Perturbations of the Eigenvalue Problem for the Dirichlet p-Laplacian

被引:1
作者
Papageorgiou, Nikolaos S. [1 ]
Zhang, Chao [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Principal eigenvalue; nonlinear regularity; nonlinear maximum principle; multiple positive solutions; singular term; POSITIVE SOLUTIONS; EQUATIONS;
D O I
10.1007/s00025-020-01340-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem, driven by the p-Laplacian with a reaction involving two parameters lambda is an element of R, theta > 0. We view the problem as a perturbation of the classical eigenvalue problem for the Dirichlet problem. The perturbation consists of a parametric singular term and of a superlinear term. We prove a nonexistence and a multiplicity results in terms of the principal eigenvalue (lambda) over cap (1) > 0 of (-Delta(p), W-0(1,p)(Omega)). So, we show that if lambda >= (lambda) over cap (1) and theta > 0, then the problem has no positive solution, while if lambda < <(lambda)over cap>(1) and theta > 0 is suitably small (depending on lambda), there are two positive smooth solutions.
引用
收藏
页数:18
相关论文
共 17 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]  
Gasinski L., 2016, EXERCISES ANAL PART, DOI 10.1007/978-3-319-27817-9
[4]  
Gasinski L., 2006, Nonlinear Analysis
[5]   Multiple Solutions for Nonlinear Coercive Problems with a Nonhomogeneous Differential Operator and a Nonsmooth Potential [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (03) :417-443
[6]  
Gilbarg D, 2015, Elliptic Partial Differential Equations of Second Order, V224
[7]   UNIQUENESS OF POSITIVE SOLUTIONS FOR QUASI-LINEAR ELLIPTIC-EQUATIONS WHEN A PARAMETER IS LARGE [J].
GUO, ZM ;
WEBB, JRL .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :189-198
[8]   ON A SINGULAR NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (03) :721-730
[9]   The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition [J].
Li, Gongbao ;
Yang, Caiyun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4602-4613
[10]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219