An Improved Retrieval Algorithm for Water Vapor Retrieval: Application to the Envisat Microwave Radiometer

被引:26
作者
Obligis, Estelle [1 ]
Rahmani, Abdel [1 ]
Eymard, Laurence [2 ]
Labroue, Sylvie [1 ]
Bronner, Emilie [3 ]
机构
[1] Collecte Localisat Satellites, F-31520 Ramonville St Agne, France
[2] Univ Paris 06, Inst Pierre Simon Laplance, CNRS, Lab Oceanog & Climat Experimentat & Approches Num, F-75252 Paris, France
[3] Ctr Natl Etud Spatiales, F-75039 Paris, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2009年 / 47卷 / 09期
关键词
Microwave radiometry; water vapor retrieval; wet tropospheric correction; IN-FLIGHT CALIBRATION; GEOPHYSICAL PRODUCTS; TEMPERATURE; VALIDATION; ERROR;
D O I
10.1109/TGRS.2009.2020433
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Algorithms proposed to retrieve water vapor are usually developed using statistical regression. Recent results have shown that this global statistical approach creates systematic geographical errors implying systematic biases. In the particular case of the wet tropospheric correction for altimetry missions, these biases directly distort the sea level estimation. After an in-depth analysis of the retrieval errors, we propose a new approach that significantly improves the quality of the retrieval algorithm.
引用
收藏
页码:3057 / 3064
页数:8
相关论文
共 50 条
[21]   Atmospheric Water Vapor and Cloud Liquid Water Retrieval Over the Arctic Ocean Using Satellite Passive Microwave Sensing [J].
Bobylev, Leonid P. ;
Zabolotskikh, Elizaveta V. ;
Mitnik, Leonid M. ;
Mitnik, Maia L. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :283-294
[22]   Linear correction method for improved atmospheric vertical profile retrieval based on ground-based microwave radiometer [J].
Zhao, Yuxin ;
Yan, Hualong ;
Wu, Peng ;
Zhou, Di .
ATMOSPHERIC RESEARCH, 2020, 232
[23]   The Bayesian Algorithm for Microwave Precipitation Retrieval (BAMPR): potential and application to TRMM data [J].
Di Michele, S ;
Tassa, A ;
Mugnai, A ;
Marzano, FS .
IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, :3142-3144
[24]   Impact of the Soil Moisture Distribution in the Top Layer on the Accuracy Moisture Retrieval by Microwave Radiometer Data [J].
Yashchenko, Alexandr S. ;
Bobrov, Pavel P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09) :5239-5246
[25]   A New Algorithm for Soil Moisture Retrieval With L-Band Radiometer [J].
Guo, Peng ;
Shi, Jiancheng ;
Liu, Qiang ;
Du, Jinyang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) :1147-1155
[26]   Water vapor retrieval from OMI visible spectra [J].
Wang, H. ;
Liu, X. ;
Chance, K. ;
Abad, G. Gonzalez ;
Miller, C. Chan .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (06) :1901-1913
[27]   Optimal Channel Selection of Spaceborne Microwave Radiometer for Surface Pressure Retrieval over Oceans [J].
Zhang, Zijin ;
Dong, Xiaolong ;
Zhu, Di .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2022, 39 (12) :1857-1868
[28]   Retrieval of parameters of a horizontal hydrometeor distribution within the field of view of a satellite microwave radiometer [J].
Petrenko, BZ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (09) :1871-1878
[29]   A Deep Learning Approach to Improve the Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer [J].
Yan, Xing ;
Liang, Chen ;
Jiang, Yize ;
Luo, Nana ;
Zang, Zhou ;
Li, Zhanqing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12) :8427-8437
[30]   Compact Microwave Radiometer for Water Vapor Estimation with Machine Learning Method [J].
Minowa, Masahiro ;
Araki, Kentaro ;
Takashima, Yuya .
SOLA, 2024, 20 :339-346