Characteristics and Mechanism of Styrene Cationic Polymerization in Aqueous Media Initiated by Cumyl Alcohol/B(C6F5)3

被引:12
作者
Zhang, Jinghan [1 ]
Wu, Yibo [2 ,3 ]
Li, Xiaoning [1 ]
Yang, Dan [2 ]
Zhang, Min [2 ]
Wang, Hao [2 ]
Shang, Yuwei [2 ]
Ren, Ping [2 ]
Mu, Xin [2 ]
Li, Shuxin [2 ]
Guo, Wenli [1 ,3 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
[2] Beijing Inst Petrochem Technol, Dept Mat Sci & Engn, Beijing 102617, Peoples R China
[3] Beijing Inst Petrochem Technol, Beijing Key Lab Special Elastomer Composite Mat, Beijing 102617, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
aqueous media; cationic polymerization; tris(pentafluorophenyl)boron; density functional theory; styrene; HIGHLY REACTIVE POLYISOBUTYLENES; P-METHOXYSTYRENE; MOLECULAR-DYNAMICS; LEWIS-ACIDS; SUSPENSION; VINYL; ISOBUTYLENE; COMPLEXES; CATALYST; SOLVENT;
D O I
10.1002/macp.201800419
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Styrene cationic polymerizations initiated by cumyl alcohol (CumOH)/B(C6F5)(3) are systematically studied in aqueous suspension and emulsion. Theoretical calculations and experimental research suggest that CumOH/B(C6F5)(3) has higher initiating activity than H2O/B(C6F5)(3). During emulsion polymerization of styrene, molecular weight and polymerization rate decrease with the addition of surfactants. These polymerization processes share the same features. Specifically, all elemental reactions (initiation, propagation, and termination) in aqueous media occur at the droplet interface. End structure analysis indicates that chain transfer reactions to water and a-proton elimination and chain transfer reactions to monomer occur. The possible mechanism for the styrene cationic polymerization in aqueous media is demonstrated.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Origins, current status, and future challenges of green chemistry [J].
Anastas, PT ;
Kirchhoff, MM .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (09) :686-694
[2]   Interconvertible Living Radical and Cationic Polymerization through Reversible Activation of Dormant Species with Dual Activity [J].
Aoshima, Hiroshi ;
Uchiyama, Mineto ;
Satoh, Kotaro ;
Kamigaito, Masami .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (41) :10932-10936
[3]   A Renaissance in Living Cationic Polymerization [J].
Aoshima, Sadahito ;
Kanaoka, Shokyoku .
CHEMICAL REVIEWS, 2009, 109 (11) :5245-5287
[4]   Room temperature living cationic polymerization of styrene with HX-styrenic monomer adduct/FeCl3 systems in the presence of tetrabutylammonium halide and tetraalkylphosphonium bromide salts [J].
Banerjee, Sanjib ;
Paira, Tapas K. ;
Kotal, Atanu ;
Mandal, Tarun K. .
POLYMER, 2010, 51 (06) :1258-1269
[5]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[6]   A MOLECULAR-DYNAMICS STUDY OF THE STRUCTURE OF AN LICL.4H2O SOLUTION [J].
BOPP, P ;
OKADA, I ;
OHTAKI, H ;
HEINZINGER, K .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1985, 40 (02) :116-125
[7]   High molar mass polymers by cationic polymerisation in emulsion and miniemulsion [J].
Cauvin, S ;
Ganachaud, F ;
Moreau, M ;
Hémery, P .
CHEMICAL COMMUNICATIONS, 2005, (21) :2713-2715
[8]   CATIONIC POLYMERIZATION OF VINYL AND CYCLIC ETHERS IN SUPERCRITICAL AND LIQUID CARBON-DIOXIDE [J].
CLARK, MR ;
DESIMONE, JM .
MACROMOLECULES, 1995, 28 (08) :3002-3004
[9]   Mechanism of Isomerization in the Cationic Polymerization of Isobutylene [J].
Dimitrov, Philip ;
Emert, Jack ;
Hua, Jun ;
Sandor Keki ;
Faust, Rudolf .
MACROMOLECULES, 2011, 44 (07) :1831-1840
[10]   Simplifying the Free-Radical Polymerization of Styrene: Microwave-Assisted High-Temperature Auto Polymerizations [J].
Erdmenger, Tina ;
Becer, C. Remzi ;
Hoogenboom, Richard ;
Schubert, Ulrich S. .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2009, 62 (01) :58-63