Partially unzipped carbon nanotubes as magnetic field sensors

被引:10
作者
Costamagna, S. [1 ,2 ,3 ]
Schulz, A. [1 ]
Covaci, L. [1 ]
Peeters, F. [1 ]
机构
[1] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
[2] Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, RA-2000 Rosario, Santa Fe, Argentina
[3] Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina
关键词
D O I
10.1063/1.4726039
中图分类号
O59 [应用物理学];
学科分类号
摘要
The conductance through graphene nanoribbons (GNR) connected to a partially unzipped carbon nanotube (CNT) is studied in the presence of an external magnetic field applied parallel to the long axis of the tube by means of non-equilibrium Green's function technique. We consider CNTs that are partially unzipped to form armchair-GNR/zigzag-CNT/armchair-GNR or zigzag-GNR/armchair-CNT/zigzag-GNR junctions. We find that the inclusion of a longitudinal magnetic field affects the electronic states only in the CNT region, leading to the suppression of the conductance at low energies. We demonstrate that both types of junctions can be used as magnetic field sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726039]
引用
收藏
页数:3
相关论文
共 13 条
[1]  
Cai J, 2010, NATURE, V466
[2]   Spectral gap induced by structural corrugation in armchair graphene nanoribbons [J].
Costamagna, S. ;
Hernandez, O. ;
Dobry, A. .
PHYSICAL REVIEW B, 2010, 81 (11)
[3]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[4]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[5]   Low-energy electron transmission in a partially unzipped zigzag nanotube [J].
Klymenko, Yu. O. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 77 (03) :433-440
[6]   Low-energy electron transport in semimetal graphene ribbon junctions [J].
Klymenko, Yu. O. ;
Shevtsov, O. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 72 (02) :203-209
[7]   Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J].
Kosynkin, Dmitry V. ;
Higginbotham, Amanda L. ;
Sinitskii, Alexander ;
Lomeda, Jay R. ;
Dimiev, Ayrat ;
Price, B. Katherine ;
Tour, James M. .
NATURE, 2009, 458 (7240) :872-U5
[8]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232
[9]   Carbon Nanoelectronics: Unzipping Tubes into Graphene Ribbons [J].
Santos, H. ;
Chico, L. ;
Brey, L. .
PHYSICAL REVIEW LETTERS, 2009, 103 (08)
[10]   Functionalized single graphene sheets derived from splitting graphite oxide [J].
Schniepp, HC ;
Li, JL ;
McAllister, MJ ;
Sai, H ;
Herrera-Alonso, M ;
Adamson, DH ;
Prud'homme, RK ;
Car, R ;
Saville, DA ;
Aksay, IA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (17) :8535-8539