Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver

被引:315
作者
Satapati, Santhosh [1 ]
Sunny, Nishanth E. [1 ]
Kucejova, Blanka [1 ]
Fu, Xiaorong [1 ]
He, Tian Teng [1 ]
Mendez-Lucas, Andres [4 ]
Shelton, John M. [2 ]
Perales, Jose C. [4 ]
Browning, Jeffrey D. [1 ]
Burgess, Shawn C. [1 ,3 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Adv Imaging Res Ctr, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Dept Pathol, Dallas, TX 75390 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA
[4] Univ Barcelona, Biophys Unit, Dept Ciencies Fisiol, Barcelona, Spain
基金
美国国家卫生研究院;
关键词
tricarboxylic acid cycle; fatty acid/metabolism; inflammation; mitochondria; obesity; gluconeogenesis; oxidative stress; nonalcoholic fatty liver disease; NUCLEAR-MAGNETIC-RESONANCE; CITRIC-ACID CYCLE; NONALCOHOLIC STEATOHEPATITIS; GLUCOSE-PRODUCTION; OXIDATIVE-PHOSPHORYLATION; MITOCHONDRIAL-FUNCTION; RAT-LIVER; IN-VIVO; DIABETES-MELLITUS; MASS-SPECTROMETRY;
D O I
10.1194/jlr.M023382
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo H-2/C-13 tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial beta-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.-Satapati, S., N. E. Sunny, B. Kucejova, X. Fu, T. T. He, A. Mendez-Lucas, J. M. Shelton, J. C. Perales, J. D. Browning, and S. C. Burgess. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 2012. 53: 1080-1092.
引用
收藏
页码:1080 / 1092
页数:13
相关论文
共 68 条
[1]   Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance [J].
An, J ;
Muoio, DM ;
Shiota, M ;
Fujimoto, Y ;
Cline, GW ;
Shulman, GI ;
Koves, TR ;
Stevens, R ;
Millington, D ;
Newgard, CB .
NATURE MEDICINE, 2004, 10 (03) :268-274
[2]   VALIDATION OF 2-POOL MODEL FOR INVIVO KETONE-BODY KINETICS [J].
BAILEY, JW ;
HAYMOND, MW ;
MILES, JM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 258 (05) :E850-E855
[3]   Adipose tissue fatty acid metabolism in insulin-resistant men [J].
Bickerton, A. S. T. ;
Roberts, R. ;
Fielding, B. A. ;
Tornqvist, H. ;
Blaak, E. E. ;
Wagenmakers, A. J. M. ;
Gilbert, M. ;
Humphreys, S. M. ;
Karpe, F. ;
Frayn, K. N. .
DIABETOLOGIA, 2008, 51 (08) :1466-1474
[4]   Alterations in Hepatic Glucose and Energy Metabolism as a Result of Calorie and Carbohydrate Restriction [J].
Browning, Jeffrey D. ;
Weis, Brian ;
Davis, Jeannie ;
Satapati, Santhosh ;
Merritt, Matthew ;
Malloy, Craig R. ;
Burgess, Shawn C. .
HEPATOLOGY, 2008, 48 (05) :1487-1496
[5]   Increased Mitochondrial Oxidative Phosphorylation in the Liver Is Associated With Obesity and Insulin Resistance [J].
Buchner, David A. ;
Yazbek, Soha N. ;
Solinas, Paola ;
Burrage, Lindsay C. ;
Morgan, Michael G. ;
Hoppel, Charles L. ;
Nadeau, Joseph H. .
OBESITY, 2011, 19 (05) :917-924
[6]   Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting [J].
Burgess, SC ;
Jeffrey, FMH ;
Storey, C ;
Milde, A ;
Hausler, N ;
Merritt, ME ;
Mulder, H ;
Holm, C ;
Sherry, AD ;
Malloy, CR .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2005, 289 (01) :E53-E61
[7]   Analysis of gluconeogenic pathways in vivo by distribution of 2H in plasma glucose:: comparison of nuclear magnetic resonance and mass spectrometry [J].
Burgess, SC ;
Nuss, M ;
Chandramouli, V ;
Hardin, DS ;
Rice, M ;
Landau, BR ;
Malloy, CR ;
Sherry, AD .
ANALYTICAL BIOCHEMISTRY, 2003, 318 (02) :321-324
[8]   Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver [J].
Burgess, Shawn C. ;
He, TianTeng ;
Yan, Zheng ;
Lindner, Jill ;
Sherry, A. Dean ;
Malloy, Craig R. ;
Browning, Jeffrey D. ;
Magnuson, Mark A. .
CELL METABOLISM, 2007, 5 (04) :313-320
[9]   Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice [J].
Burgess, Shawn C. ;
Leone, Teresa C. ;
Wende, Adam R. ;
Croce, Michelle A. ;
Chen, Zhouji ;
Sherry, A. Dean ;
Malloy, Craig R. ;
Finck, Brian N. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (28) :19000-19008
[10]   Intramitochondrial Crystalline Inclusions in Nonalcoholic Steatohepatitis [J].
Caldwell, Stephen H. ;
de Freitas, Luiz Antonio R. ;
Park, Sang H. ;
Moreno, Maria Lucia V. ;
Redick, Jan A. ;
Davis, Christine A. ;
Sisson, Barbee J. ;
Patrie, James T. ;
Cotrim, Helma ;
Argo, Curtis K. ;
Al-Osaimi, Abdullah .
HEPATOLOGY, 2009, 49 (06) :1888-1895