Blaschke Products and Zero Sets in Weighted Dirichlet Spaces

被引:2
作者
Idrissi, H. Bahajji-El [1 ]
El-Fallah, O. [1 ]
机构
[1] Mohammed 5 Univ Rabat, Lab Math Anal & Applicat, Fac Sci, BP 1014, Rabat, Morocco
关键词
Blaschke product; Dirichlet space; Capacity; BOUNDARY-BEHAVIOR; INNER FUNCTIONS; BERGMAN SPACES; DERIVATIVES;
D O I
10.1007/s11118-019-09807-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with superharmonically weighted Dirichlet spaces D-w. First, we prove that the classical Dirichlet space is the largest, among all these spaces, which contains no infinite Blaschke product. Next, we give new sufficient conditions on a Blaschke sequence to be a zero set for D-w. Our conditions improve Shapiro-Shields condition for D-alpha, when alpha is an element of (0, 1).
引用
收藏
页码:1299 / 1316
页数:18
相关论文
共 34 条
[2]  
Aleman A., 1993, MULTIPLICATION OPERA
[3]   On Blaschke products with derivatives in Bergman spaces with normal weights [J].
Aleman, Alexandru ;
Vukotic, Dragan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :492-505
[4]  
[Anonymous], 2001, SPRINGER MG MATH
[5]  
[Anonymous], 2002, GRADUATE STUDIES MAT
[6]   On Dirichlet Spaces With a Class of Superharmonic Weights [J].
Bao, Guanlong ;
Gogus, Nihat Gokhan ;
Pouliasis, Stamatis .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (04) :721-741
[7]   ESPACES DE DIRICHLET .1. LE CAS ELEMENTAIRE [J].
BEURLING, A ;
DENY, J .
ACTA MATHEMATICA, 1958, 99 (3-4) :203-224
[8]   Boundary behaviour of functions of Nevanlinna class [J].
Bourhim, A ;
El-Fallah, O ;
Kellay, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :347-395
[9]   SETS OF UNIQUENESS FOR FUNCTIONS REGULAR IN THE UNIT CIRCLE [J].
CARLESON, L .
ACTA MATHEMATICA, 1952, 87 (05) :325-345
[10]  
Carleson L, 1950, CLASS MEROMORPHIC FU