Thresholded semantic framework for a fully integrated fuzzy logic language

被引:15
作者
Julian-Iranzo, Pascual [1 ]
Moreno, Gines [2 ]
Penabad, Jaime [3 ]
机构
[1] UCLM, Dept Technol & Informat Syst, Ciudad Real 13071, Spain
[2] UCLM, Dept Comp Syst, Albacete 02071, Spain
[3] UCLM, Dept Math, Albacete 02071, Spain
关键词
Fuzzy logic programming; Similarity relations; Declarative semantics; Fixpoint semantics; Operational semantics; Correctness; UNIFICATION; PROLOG; XPATH;
D O I
10.1016/j.jlamp.2017.08.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work proposes a declarative semantics based on a fuzzy variant of the classical notion of least Herbrand model for the so-called FASILL programming language (acronym of "Fuzzy Aggregators and Similarity Into a Logic Language") which has been recently designed and implemented for coping with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity. Also, we define an immediate consequence operator that allows us to give a fixpoint characterization of the least Herbrand model for a FASILL program. A remarkable aspect of our declarative and fixpoint semantics is the fact that both have been enriched with the use of thresholds thanks to the natural ability of the underlying fuzzy language for managing such constructs. Moreover, we have connected both semantics with an operational one, which also manages thresholds in an efficient way, by proving the correctness of the whole semantic framework. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 67
页数:26
相关论文
共 55 条
[1]   Fuzzy XPath for the Automatic Search of Fuzzy Formulae Models [J].
Almendros-Jimenez, Jesus M. ;
Bofill, Miquel ;
Luna-Tedesqui, Alejandro ;
Moreno, Gines ;
Vazquez, Carlos ;
Villaret, Mateu .
SCALABLE UNCERTAINTY MANAGEMENT (SUM 2015), 2015, 9310 :385-398
[2]   Fuzzy XPath through Fuzzy Logic Programming [J].
Almendros-Jimenez, Jesus M. ;
Luna Tedesqui, Alejandro ;
Moreno, Gines .
NEW GENERATION COMPUTING, 2015, 33 (02) :173-209
[3]  
Almendros-Jiménez JM, 2013, LECT NOTES COMPUT SC, V7903, P300
[4]   Designing Lattices of Truth Degrees for Fuzzy Logic Programming Environments [J].
Antonio Guerrero, Juan ;
del Senor Martinez, Maria ;
Moreno, Gines ;
Vazquez, Carlos .
2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, :995-1004
[5]  
Apt K. R., 1997, From Logic Programming to Prolog
[6]  
Arcelli F., 1996, P INT WORKSH LOG PRO
[7]  
Biacino L, 2000, MATH LOGIC QUART, V46, P77, DOI 10.1002/(SICI)1521-3870(200001)46:1<77::AID-MALQ77>3.0.CO
[8]  
2-X
[9]  
Bofill M., 2013, P 13 C PROGR LANG PR, P151, DOI [10.14279/tuj.eceasst.64.991, DOI 10.14279/TUJ.ECEASST.64.991]
[10]   A Transformation-based implementation for CLP with qualification and proximity [J].
Caballero, R. ;
Rodriguez-Artalejo, M. ;
Romero-Diaz, C. A. .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2014, 14 :1-63