Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system

被引:39
|
作者
Hu, Guangping [1 ]
Li, Xiaoling [1 ]
Wang, Yuepeng [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
关键词
Hopf bifurcation; Diffusion; Turing instability; Pattern; Chaos; TURING INSTABILITY; FUNCTIONAL-RESPONSES; SPATIAL-PATTERN; DYNAMICS; INTERFERENCE; STRIPES; SPOTS; MODEL; WAVE;
D O I
10.1007/s11071-015-1988-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we consider a diffusive predator-prey system with modified Holling-Tanner functional response under homogeneous Neumann boundary condition. The qualitative analysis and Hopf bifurcation of the original ODE system are discussed, the conditions of the Turing instability for the reaction-diffusion system are derived, and the Turing space in the parameters space is achieved. We present the results of numerical simulations in order to validate the obtained analytical findings. We found some interesting spatiotemporal patterns when parameter values are taken in Turing-Hopf domain, in which the dynamics shows spatiotemporal behavior that is influenced by temporal oscillations as well as by Turing instabilities. With the help of numerical simulations, we identified the different types of spatial patterns in this diffusive predator-prey system, including stationary spatial pattern, periodic competing dynamics, and spatiotemporal chaos.
引用
收藏
页码:265 / 275
页数:11
相关论文
共 50 条
  • [1] Pattern formation and spatiotemporal chaos in a reaction–diffusion predator–prey system
    Guangping Hu
    Xiaoling Li
    Yuepeng Wang
    Nonlinear Dynamics, 2015, 81 : 265 - 275
  • [2] Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model
    Meng, Lili
    Han, Yutao
    Lu, Zhiyi
    Zhang, Guang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [3] Pattern dynamics of a predator-prey reaction-diffusion model with spatiotemporal delay
    Xu, Jian
    Yang, Gaoxiang
    Xi, Hongguang
    Su, Jianzhong
    NONLINEAR DYNAMICS, 2015, 81 (04) : 2155 - 2163
  • [4] SPATIOTEMPORAL DYNAMICS OF TELEGRAPH REACTION-DIFFUSION PREDATOR-PREY MODELS
    Hernandez-Martinez, Eliseo
    Puebla, Hector
    Perez-Munoz, Teresa
    Gonzalez-Brambila, Margarita
    Velasco-Hernandez, Jorge X.
    BIOMAT 2012: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2013, : 268 - 281
  • [5] Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting
    Guin, Lakshmi Narayan
    Pal, Sudipta
    Chakravarty, Santabrata
    Djilali, Salih
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (01)
  • [6] A predator-prey reaction-diffusion system with nonlocal effects
    Gourley, SA
    Britton, NF
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (03) : 297 - 333
  • [7] Persistence of a discrete reaction-diffusion predator-prey system
    Tineo, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (05) : 627 - 634
  • [8] Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay
    Liu, Hua
    Ye, Yong
    Wei, Yumei
    Ma, Weiyuan
    Ma, Ming
    Zhang, Kai
    COMPLEXITY, 2019, 2019
  • [9] A reaction-diffusion system modeling predator-prey with prey-taxis
    Ainseba, Bedr'Eddine
    Bendahmane, Mostafa
    Noussair, Ahmed
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) : 2086 - 2105
  • [10] Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge
    Guin, Lakshmi Narayan
    Mondal, Benukar
    Chakravarty, Santabrata
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (06)