Modeling dynamic brittle fracture in functionally graded materials using hyperbolic phase field and smoothed particle hydrodynamics

被引:14
作者
Rahimi, Mohammad Naqib [1 ]
Moutsanidis, Georgios [1 ,2 ]
机构
[1] SUNY Stony Brook, Dept Civil Engn, Stony Brook, NY 11794 USA
[2] Inst Adv Computat Sci, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Functionally graded materials; Brittle fracture; Phase field; Explicit dynamics; SPH; Particle methods; MATERIAL POINT METHOD; CRACK-PROPAGATION; ISOGEOMETRIC ANALYSIS; PERIDYNAMIC MODEL; SIMULATION; PLATES;
D O I
10.1016/j.cma.2022.115642
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a novel particle-based computational framework for the numerical simulation of dynamic crack propagation in functionally graded materials under highly dynamic loading conditions and large deformations. The approach is based on an innovative computational method that solves phase field of brittle fracture with smoothed particle hydrodynamics. The meshfree nature of the discretization technique allows for the simulation of scenarios involving extreme deformations and material separation, as opposed to conventional mesh-based computational techniques such as the finite element method. At the same time, the damage evolution is governed by a hyperbolic partial differential equation that allows for efficient explicit time integration and avoids the complexities of solving linear systems of equations. The framework is verified and validated against other computational approaches and experimental results. Finally, the proposed approach is applied to some challenging impact scenarios that involve fast dynamics or large deformations, and it is shown that it can be easily used for identifying material gradation profiles that manipulate crack propagation. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Modeling fracture in brittle materials with inertia effects using the phase field method
    Reddy, Surya Shekar K.
    Amirtham, Rajagopal
    Reddy, Junuthula N.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (01) : 144 - 159
  • [32] Optimizing integration point density for exponential finite element shape functions for phase-field modeling of fracture in functionally graded materials
    Sidharth, P. C.
    Rao, B. N.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2024, 25 (05) : 321 - 334
  • [33] Mixed-mode fracture modeling with smoothed particle hydrodynamics
    Douillet-Grellier, Thomas
    Jones, Bruce D.
    Pramanik, Ranjan
    Pan, Kai
    Albaiz, Abdulaziz
    Williams, John R.
    COMPUTERS AND GEOTECHNICS, 2016, 79 : 73 - 85
  • [34] Phase-field ductile fracture analysis of multi-materials and functionally graded composites through numerical and experimental methods
    Azinpour, E.
    Rzepa, S.
    Melzer, D.
    Reis, A.
    Dzugan, J.
    de Sa, J. M. A. Cesar
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 125
  • [35] Phase field approximation of dynamic brittle fracture
    Schlueter, Alexander
    Willenbuecher, Adrian
    Kuhn, Charlotte
    Mueller, Ralf
    COMPUTATIONAL MECHANICS, 2014, 54 (05) : 1141 - 1161
  • [36] Development of a phase field method for modeling brittle and ductile fracture
    Huang, Chuanshi
    Gao, Xiaosheng
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 169
  • [37] Dynamic fracture analysis of functionally graded materials using ordinary state -based peridynamics
    Ozdemir, M.
    Kefal, A.
    Imachi, M.
    Tanaka, S.
    Oterkus, E.
    COMPOSITE STRUCTURES, 2020, 244
  • [38] TWO-PHASE MODELING OF CONDUCTION MODE LASER WELDING USING SMOOTHED PARTICLE HYDRODYNAMICS
    Hu, Haoyue
    Eberhard, Peter
    PARTICLE-BASED METHODS IV-FUNDAMENTALS AND APPLICATIONS, 2015, : 308 - 319
  • [39] Fracture modeling of brittle biomaterials by the phase-field method
    Wu, Chi
    Fang, Jianguang
    Zhang, Zhongpu
    Entezari, Ali
    Sun, Guangyong
    Swain, Michael, V
    Li, Qing
    ENGINEERING FRACTURE MECHANICS, 2020, 224 (224)
  • [40] Phase-field modeling of brittle fracture using an efficient virtual element scheme
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Hussein, Ali
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 443 - 466