Particle size effects in metallic microparticle impact-bonding

被引:63
作者
Dowding, Ian [1 ,2 ]
Hassani, Mostafa [1 ,5 ]
Sun, Yuchen [1 ,3 ,4 ]
Veysset, David [3 ]
Nelson, Keith A. [3 ,4 ]
Schuh, Christopher A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
[3] MIT, Inst Soldier Nanotechnol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Chem, Cambridge, MA 02139 USA
[5] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USA
关键词
Cold spray; Critical velocity; Size effects; Bonding; Particle deformation; High-velocity Impacts; ADIABATIC SHEAR INSTABILITY; GAS-DYNAMIC SPRAY; COLD-SPRAY; DEPOSITION BEHAVIOR; ALUMINUM; ADHESION; MICROSTRUCTURE; EFFICIENCY; MAGNESIUM; STRENGTH;
D O I
10.1016/j.actamat.2020.04.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In cold spray processing of metals, the critical velocity for particle bonding is dependent on both intrinsic material properties, such as density and (spall) strength, and extrinsic process parameters, such as the powder particle size. In this work, we specifically isolate and investigate particle size effects on the critical velocity for bonding through laser-induced single particle impact experiments and finite element simulations. We also present a predictive framework to correlate particle size and critical velocity. We show that an increase in particle size leads to an increase in the temperature of the jet formed at the interface of the particle and the substrate. This increased temperature locally decreases the spall strength of the material which, in turn, decreases the critical velocity for larger particles. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 42 条
[21]   The α-ω phase transition in shock-loaded titanium [J].
Jones, David R. ;
Morrow, Benjamin M. ;
Trujillo, Carl P. ;
Gray, George T., III ;
Cerreta, Ellen K. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (04)
[22]   Spall fracture properties of aluminum and magnesium at high temperatures [J].
Kanel, GI ;
Razorenov, SV ;
Bogatch, A ;
Utkin, AV ;
Fortov, VE ;
Grady, DE .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (11) :8310-8317
[23]   Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process [J].
Kang, Kicheol ;
Yoon, Sanghoon ;
Ji, Youlgwun ;
Lee, Changhee .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 486 (1-2) :300-307
[24]   Cold spray deposition: Significance of particle impact phenomena [J].
Klinkov, SV ;
Kosarev, VF ;
Rein, M .
AEROSPACE SCIENCE AND TECHNOLOGY, 2005, 9 (07) :582-591
[25]   Warm spraying-a novel coating process based on high-velocity impact of solid particles [J].
Kuroda, Seiji ;
Kawakita, Jin ;
Watanabe, Makoto ;
Katanoda, Hiroshi .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2008, 9 (03)
[26]  
Li C.J., 2003, Thermal Spray, P91
[27]   Effect of different incidence angles on bonding performance in cold spraying [J].
Li Gang ;
Wang Xiao-fang ;
Li Wen-ya .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2007, 17 (01) :116-121
[28]   Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization [J].
Marrocco, T. ;
McCartney, D. G. ;
Shipway, P. H. ;
Sturgeon, A. J. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2006, 15 (02) :263-272
[29]   Cold spray coating: review of material systems and future perspectives [J].
Moridi, A. ;
Hassani-Gangaraj, S. M. ;
Guagliano, M. ;
Dao, M. .
SURFACE ENGINEERING, 2014, 30 (06) :369-U29
[30]   Stochastic nature of plasticity of aluminum micro-pillars [J].
Ng, K. S. ;
Ngan, A. H. W. .
ACTA MATERIALIA, 2008, 56 (08) :1712-1720