Particle size effects in metallic microparticle impact-bonding

被引:62
作者
Dowding, Ian [1 ,2 ]
Hassani, Mostafa [1 ,5 ]
Sun, Yuchen [1 ,3 ,4 ]
Veysset, David [3 ]
Nelson, Keith A. [3 ,4 ]
Schuh, Christopher A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
[3] MIT, Inst Soldier Nanotechnol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Chem, Cambridge, MA 02139 USA
[5] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USA
关键词
Cold spray; Critical velocity; Size effects; Bonding; Particle deformation; High-velocity Impacts; ADIABATIC SHEAR INSTABILITY; GAS-DYNAMIC SPRAY; COLD-SPRAY; DEPOSITION BEHAVIOR; ALUMINUM; ADHESION; MICROSTRUCTURE; EFFICIENCY; MAGNESIUM; STRENGTH;
D O I
10.1016/j.actamat.2020.04.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In cold spray processing of metals, the critical velocity for particle bonding is dependent on both intrinsic material properties, such as density and (spall) strength, and extrinsic process parameters, such as the powder particle size. In this work, we specifically isolate and investigate particle size effects on the critical velocity for bonding through laser-induced single particle impact experiments and finite element simulations. We also present a predictive framework to correlate particle size and critical velocity. We show that an increase in particle size leads to an increase in the temperature of the jet formed at the interface of the particle and the substrate. This increased temperature locally decreases the spall strength of the material which, in turn, decreases the critical velocity for larger particles. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 42 条
[1]   Cold spraying - A materials perspective [J].
Assadi, H. ;
Kreye, H. ;
Gaertner, F. ;
Klassen, T. .
ACTA MATERIALIA, 2016, 116 :382-407
[2]   Bonding mechanism in cold gas spraying [J].
Assadi, H ;
Gärtner, F ;
Stoltenhoff, T ;
Kreye, H .
ACTA MATERIALIA, 2003, 51 (15) :4379-4394
[3]  
Blochet Q., 2014, ITSC 2014, P69
[4]   Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview [J].
Broitman, Esteban .
TRIBOLOGY LETTERS, 2017, 65 (01)
[5]   Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study [J].
Chakrabarty, Rohan ;
Song, Jun .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2017, 26 (07) :1434-1444
[6]  
Champagne VK, 2007, WOODHEAD PUBL MATER, P327, DOI 10.1533/9781845693787.3.327
[7]   On the role of oxide film's cleaning effect into the metallurgical bonding during cold spray [J].
Chen, Chaoyue ;
Xie, Yingchun ;
Huang, Renzhong ;
Deng, Sihao ;
Ren, Zhongming ;
Liao, Hanlin .
MATERIALS LETTERS, 2018, 210 :199-202
[8]   Size-affected single-slip behavior of pure nickel microcrystals [J].
Dimiduk, DM ;
Uchic, MD ;
Parthasarathy, TA .
ACTA MATERIALIA, 2005, 53 (15) :4065-4077
[9]   Particle velocity and deposition efficiency in the cold spray process [J].
Gilmore, DL ;
Dykhuizen, RC ;
Neiser, RA ;
Roemer, TJ ;
Smith, MF .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 1999, 8 (04) :576-582
[10]   Microstructure and Mechanical Properties of Ti Cold-Spray Splats Determined by Electron Channeling Contrast Imaging and Nanoindentation Mapping [J].
Goldbaum, Dina ;
Chromik, Richard R. ;
Brodusch, Nicolas ;
Gauvin, Raynald .
MICROSCOPY AND MICROANALYSIS, 2015, 21 (03) :570-581