Electrochemical Kinetic Study of LiFePO4 Using Cavity Microelectrode

被引:123
作者
Come, J. [1 ]
Taberna, P. -L. [1 ]
Hamelet, S. [2 ]
Masquelier, C. [2 ]
Simon, P. [1 ]
机构
[1] Univ Toulouse 3, CIRIMAT UMR CNRS 5085, F-31062 Toulouse 4, France
[2] Univ Picardie Jules Verne, LRCS, UMR CNRS 6007, F-80000 Amiens, France
关键词
LI-INSERTION/EXTRACTION; ELECTRODE MATERIALS; LITHIUM DIFFUSION; PHASE-TRANSITION; NANOPARTICLES; BATTERIES; LIXFEPO4; FEPO4;
D O I
10.1149/1.3619791
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium cation insertion and extraction in LiFePO4 were electrochemically studied with a cavity microelectrode (CME). Cyclic voltammetry measurements were used to characterize the kinetics of the material. LiFePO4 was successfully cycled from 0.1 mV s(-1) up to 1 V s(-1) and is therefore a suitable material to be used in high power applications, such as asymmetric hybrid supercapacitors. Several kinetic behaviors were observed depending on the sweep rate. The LiFePO4 was found to follow different kinetics behaviors depending of the sweep rate. The charge storage mechanisms were investigated for Li+ extraction/insertion. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3619791] All rights reserved.
引用
收藏
页码:A1090 / A1093
页数:4
相关论文
共 27 条
[1]   Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition [J].
Allen, Jan L. ;
Jow, T. Richard ;
Wolfenstine, Jeffrey .
CHEMISTRY OF MATERIALS, 2007, 19 (08) :2108-2111
[2]  
Bard A.J., 2001, Electrochemical Methods: Fundamentals and Applications, V2nd, P233
[3]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[4]   Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques [J].
Churikov, A. V. ;
Ivanishchev, A. V. ;
Ivanishcheva, I. A. ;
Sycheva, V. O. ;
Khasanova, N. R. ;
Antipov, E. V. .
ELECTROCHIMICA ACTA, 2010, 55 (08) :2939-2950
[5]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[6]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[7]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[8]  
Dreyer W, 2010, NAT MATER, V9, P448, DOI [10.1038/nmat2730, 10.1038/NMAT2730]
[9]   Optimized lithium iron phosphate for high-rate electrochemical applications [J].
Franger, S ;
Bourbon, C ;
Le Cras, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1024-A1027
[10]   Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 [J].
Gibot, Pierre ;
Casas-Cabanas, Montse ;
Laffont, Lydia ;
Levasseur, Stephane ;
Carlach, Philippe ;
Hamelet, Stephane ;
Tarascon, Jean-Marie ;
Masquelier, Christian .
NATURE MATERIALS, 2008, 7 (09) :741-747