Calibrated nanoscale dopant profiling using a scanning microwave microscope

被引:71
作者
Huber, H. P. [2 ]
Humer, I. [3 ]
Hochleitner, M. [2 ]
Fenner, M. [1 ]
Moertelmaier, M. [1 ]
Rankl, C. [1 ]
Imtiaz, A. [4 ]
Wallis, T. M. [4 ]
Tanbakuchi, H. [1 ]
Hinterdorfer, P. [2 ]
Kabos, P.
Smoliner, J. [3 ]
Kopanski, J. J. [5 ]
Kienberger, F. [1 ]
机构
[1] Agilent Technol, Santa Clara, CA 95051 USA
[2] Univ Linz, Christian Doppler Lab Nanoscop Methods Biophys, A-4040 Linz, Austria
[3] Vienna Univ Technol, Inst Solid State Elect, A-1040 Vienna, Austria
[4] NIST, Electromagnet Div, Boulder, CO 80305 USA
[5] NIST, Semicond Measurements Div, Gaithersburg, MD 20899 USA
关键词
Atomic force microscopy - Calibration - Nanotechnology - Semiconductor doping - Semiconductor junctions - Microscopes;
D O I
10.1063/1.3672445
中图分类号
O59 [应用物理学];
学科分类号
摘要
The scanning microwave microscope is used for calibrated capacitance spectroscopy and spatially resolved dopant profiling measurements. It consists of an atomic force microscope combined with a vector network analyzer operating between 1-20 GHz. On silicon semiconductor calibration samples with doping concentrations ranging from 10(15) to 10(20) atoms/cm(3), calibrated capacitance-voltage curves as well as derivative dC/dV curves were acquired. The change of the capacitance and the dC/dV signal is directly related to the dopant concentration allowing for quantitative dopant profiling. The method was tested on various samples with known dopant concentration and the resolution of dopant profiling determined to 20% while the absolute accuracy is within an order of magnitude. Using a modeling approach the dopant profiling calibration curves were analyzed with respect to varying tip diameter and oxide thickness allowing for improvements of the calibration accuracy. Bipolar samples were investigated and nano-scale defect structures and p-n junction interfaces imaged showing potential applications for the study of semiconductor device performance and failure analysis. (C) 2012 American Institute of Physics. [doi:10.1063/1.3672445]
引用
收藏
页数:9
相关论文
共 23 条
[1]   Kelvin probe force microscopy in the presence of intrinsic local electric fields [J].
Baumgart, Christine ;
Mueller, Anne-Dorothea ;
Mueller, Falk ;
Schmidt, Heidemarie .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (04) :777-789
[2]   Quantitative scanning capacitance spectroscopy [J].
Brezna, W ;
Schramboeck, M ;
Lugstein, A ;
Harasek, S ;
Enichlmair, H ;
Bertagnolli, E ;
Gornik, E ;
Smoliner, J .
APPLIED PHYSICS LETTERS, 2003, 83 (20) :4253-4255
[3]   Epitaxial staircase structure for the calibration of electrical characterization techniques [J].
Clarysse, T ;
Caymax, M ;
De Wolf, P ;
Trenkler, T ;
Vandervorst, W ;
McMurray, JS ;
Kim, J ;
Williams, CC ;
Clark, JG ;
Neubauer, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (01) :394-400
[4]   Tip geometry effects in scanning capacitance microscopy on GaAs Schottky and metal-oxide-semiconductor-type junctions [J].
Eckhardt, C. ;
Brezna, W. ;
Bethge, O. ;
Bertagnolli, E. ;
Smoliner, J. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[5]   Nanoscale capacitance microscopy of thin dielectric films [J].
Gomila, G. ;
Toset, J. ;
Fumagalli, L. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[6]   Observation of dopant profile of transistors sing scanning nonlinear dielectric microscopy [J].
Honda, K. ;
Ishikawa, K. ;
Cho, Y. .
16TH INTERNATIONAL CONFERENCE ON MICROSCOPY OF SEMICONDUCTING MATERIALS, 2010, 209
[7]   Calibrated nanoscale capacitance measurements using a scanning microwave microscope [J].
Huber, H. P. ;
Moertelmaier, M. ;
Wallis, T. M. ;
Chiang, C. J. ;
Hochleitner, M. ;
Imtiaz, A. ;
Oh, Y. J. ;
Schilcher, K. ;
Dieudonne, M. ;
Smoliner, J. ;
Hinterdorfer, P. ;
Rosner, S. J. ;
Tanbakuchi, H. ;
Kabos, P. ;
Kienberger, F. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (11)
[8]   Scanning microwave microscopy and scanning capacitance microscopy on colloidal nanocrystals [J].
Humer, I. ;
Bethge, O. ;
Bodnarchuk, M. ;
Kovalenko, M. ;
Yarema, M. ;
Heiss, W. ;
Huber, H. P. ;
Hochleitner, M. ;
Hinterdorfer, P. ;
Kienberger, F. ;
Smoliner, J. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (06)
[9]  
Imtiaz A., 2009, APPL PHYS LETT, V90
[10]   The physical principles of scanning capacitance spectroscopy [J].
Isenbart, J. ;
Born, A. ;
Wiesendanger, R. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (Suppl 2) :S243-S251