The time-splitting Fourier spectral method for the coupled Schrodinger-Boussinesq equations

被引:41
作者
Bai, Dongmei [1 ]
Wang, Jianli [1 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China
关键词
Coupled Schrodinger-Boussinesq equations; Time-splitting; Fourier spectral method; WAVE INTERACTION EQUATIONS; FIELD-EQUATIONS; PLASMA; SYSTEM;
D O I
10.1016/j.cnsns.2011.08.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The periodic initial boundary value problem of the coupled Schrodinger-Boussinesq equations is studied by the time-splitting Fourier spectral method. A time-splitting spectral discretization for the Schrodinger-like equation is applied, while a Crank-Nicolson/leap-frog type discretization is utilized for time derivatives in the Boussinesq-like equation. Numerical tests show that the time-splitting Fourier spectral method provides high accuracy for the coupled Schrodinger-Boussinesq equations. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1201 / 1210
页数:10
相关论文
共 20 条
[1]   The finite element method for the coupled Schrodinger-KdV equations [J].
Bai, Dongmei ;
Zhang, Luming .
PHYSICS LETTERS A, 2009, 373 (26) :2237-2244
[2]   Efficient and accurate numerical methods for the Klein-Gordon-Schrodinger equations [J].
Bao, Weizhu ;
Yang, Li .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1863-1893
[3]   On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :487-524
[4]   A numerical study of the long wave-short wave interaction equations [J].
Borluk, H. ;
Muslu, G. M. ;
Erbay, H. A. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (2-3) :113-125
[5]   Numerical computations for long-wave short-wave interaction equations in semi-classical limit [J].
Chang, Qianshun ;
Wong, Yau-Shu ;
Lin, Chi-Kun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (19) :8489-8507
[6]   Painleve analysis and Backlund transformations for coupled generalized Schrodinger-Boussinesq system [J].
Chowdhury, AR ;
Dasgupta, B ;
Rao, NN .
CHAOS SOLITONS & FRACTALS, 1998, 9 (10) :1747-1753
[7]   A fast spectral algorithm for nonlinear wave equations with linear dispersion [J].
Fornberg, B ;
Driscoll, TA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) :456-467
[8]   AN N-SOLITON SOLUTION FOR THE NONLINEAR SCHRODINGER-EQUATION COUPLED TO THE BOUSSINESQ EQUATION [J].
HASE, Y ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (03) :679-682
[9]   Homoclinic orbits for the coupled Schrodinger-boussinesq equation and coupled Higgs equation [J].
Hu, XB ;
Guo, BL ;
Tam, HW .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (01) :189-190
[10]   SELF-MODULATION OF HIGH-FREQUENCY ELECTRIC-FIELD AND FORMATION OF PLASMA CAVITIES [J].
IKEZI, H ;
NISHIKAWA, K ;
MIMA, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) :766-773