Pathologies and liftability of Du Val del Pezzo surfaces in positive characteristic

被引:7
作者
Kawakami, Tatsuro [1 ]
Nagaoka, Masaru [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Kyushu Univ, Inst Math Ind, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
关键词
Del Pezzo surfaces; Liftability to the ring of Witt vectors; Positive characteristic; QUASI-ELLIPTIC SURFACES; MORDELL-WEIL GROUPS; COMPACTIFICATIONS;
D O I
10.1007/s00209-022-02998-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study pathologies of Du Val del Pezzo surfaces defined over an algebraically closed field of positive characteristic by relating them to their non-liftability to the ring of Witt vectors. More precisely, we investigate the condition (NB): all the anti-canonical divisors are singular, (ND): there are no Du Val del Pezzo surfaces over the field of complex numbers with the same Dynkin type, Picard rank, and anti-canonical degree, (NK): there exists an ample Z-divisor which violates the Kodaira vanishing theorem for Z-divisors, and (NL): the pair (Y, E) does not lift to the ring of Witt vectors, where Y is the minimal resolution and E is its reduced exceptional divisor. As a result, for each of these conditions, we determine all the Du Val del Pezzo surfaces which satisfy the given one.
引用
收藏
页码:2975 / 3017
页数:43
相关论文
共 39 条
[1]   SOME ELEMENTARY EXAMPLES OF NON-LIFTABLE VARIETIES [J].
Achinger, Piotr ;
Zdanowicz, Maciej .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4717-4729
[2]  
[Anonymous], 1961, I. Inst. Hautes Etudes Sci. Publ. Math.
[3]  
Arvidsson E., 2020, ARXIV200603571
[4]  
BEAUVILLE A, 1982, CR ACAD SCI I-MATH, V294, P657
[5]  
Belousov G, 2009, J MATH SCI-U TOKYO, V16, P231
[6]  
Bernasconi F., 2019, J INST MATH JUSSIEU
[7]   PURELY LOG TERMINAL THREEFOLDS WITH NON-NORMAL CENTRES IN CHARACTERISTIC TWO [J].
Cascini, Paolo ;
Tanaka, Hiromu .
AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (04) :941-979
[8]   Smooth rational surfaces violating Kawamata-Viehweg vanishing [J].
Cascini, Paolo ;
Tanaka, Hiromu .
EUROPEAN JOURNAL OF MATHEMATICS, 2018, 4 (01) :162-176
[9]   On log del Pezzo surfaces in large characteristic [J].
Cascini, Paolo ;
Tanaka, Hiromu ;
Witaszek, Jakub .
COMPOSITIO MATHEMATICA, 2017, 153 (04) :820-850
[10]  
Dolgachev IV, 2012, CLASSICAL ALGEBRAIC GEOMETRY: A MODERN VIEW, P1, DOI 10.1017/CBO9781139084437