A note on maximal solutions of nonlinear parabolic equations with absorption

被引:3
作者
Veron, Laurent [1 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, Tours, France
关键词
elliptic equations; parabolic equations; singular solutions; Wiener criterion; UNIQUENESS;
D O I
10.3233/ASY-2011-1030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If Omega is a bounded domain in R-N and f a continuous nondecreasing function satisfying a super linear growth condition at infinity, we study the existence and uniqueness of solutions for the problem (P): partial derivative(t)u - Delta u + f(u) = 0 in Q(infinity)(Omega) := Omega x (0, infinity), u = infinity on the parabolic boundary partial derivative(p)Q. We prove that in most cases, the existence and uniqueness is reduced to the same property for the associated stationary equation in Omega.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 16 条
[1]  
Al Sayed W, 2009, ADV NONLINEAR STUD, V9, P149
[2]  
ALSAYED W, 2010, QUAD MAT, V23, P1
[3]   SEMILINEAR PARABOLIC PROBLEMS WITH GIVEN MEASURES [J].
BARAS, P ;
PIERRE, M .
APPLICABLE ANALYSIS, 1984, 18 (1-2) :111-149
[4]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[5]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[6]   Wiener's test for super-Brownian motion and the Brownian snake [J].
Dhersin, JS ;
LeGall, JF .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (01) :103-129
[7]   ON SOLUTIONS OF DELTA-U= F(U) [J].
KELLER, JB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :503-510
[8]   Wiener regularity for large solutions of nonlinear equations [J].
Labutin, DA .
ARKIV FOR MATEMATIK, 2003, 41 (02) :307-339
[9]   Existence and uniqueness results for large solutions of general nonlinear elliptic equations [J].
Marcus, M ;
Véron, L .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (04) :637-652
[10]   Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations [J].
Marcus, M ;
Veron, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :237-274