Optimal local rejection for classifiers

被引:29
作者
Fischer, Lydia [1 ,2 ]
Hammer, Barbara [1 ]
Wersing, Heiko [2 ]
机构
[1] Univ Bielefeld, Univ Str 25, D-33615 Bielefeld, Germany
[2] HONDA Res Inst Europe, Carl Legien Str 30, D-63065 Offenbach, Germany
关键词
Classification; Prototype-based; Distance-based; Local rejection; Multiple choice knapsack; EXTREME LEARNING-MACHINE; MULTICLASS CLASSIFICATION; VECTOR QUANTIZATION; OPTION; RECOGNITION; STRATEGIES;
D O I
10.1016/j.neucom.2016.06.038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We analyse optimal rejection strategies for classifiers with input space partitioning, e.g. prototype-based classifiers, support vector machines or decision trees using certainty measures such as the distance to the closest decision border. We provide new theoretical results: we link this problem to the multiple choice knapsack problem and devise an exact polynomial-time dynamic programming (DP) scheme to determine optimal local thresholds on given data. Further, we propose a linear time, memory efficient approximation thereof. We show in experiments that the approximation has a competitive performance compared to the full DP. Further, we evaluate the performance of classification with rejection in various benchmarks: we conclude that local rejection is beneficial in particular for simple classifiers, while the improvement is less pronounced for advanced classifiers. An evaluation on speech prosody and biomedical data highlights the benefit of local thresholds. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:445 / 457
页数:13
相关论文
共 62 条
[1]  
Alvarez I, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P654
[2]  
[Anonymous], 2012, 20 EUR S ART NEUR NE
[3]   Urine Steroid Metabolomics as a Biomarker Tool for Detecting Malignancy in Adrenal Tumors [J].
Arlt, Wiebke ;
Biehl, Michael ;
Taylor, Angela E. ;
Hahner, Stefanie ;
Libe, Rossella ;
Hughes, Beverly A. ;
Schneider, Petra ;
Smith, David J. ;
Stiekema, Han ;
Krone, Nils ;
Porfiri, Emilio ;
Opocher, Giuseppe ;
Bertherat, Jerome ;
Mantero, Franco ;
Allolio, Bruno ;
Terzolo, Massimo ;
Nightingale, Peter ;
Shackleton, Cedric H. L. ;
Bertagna, Xavier ;
Fassnacht, Martin ;
Stewart, Paul M. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2011, 96 (12) :3775-3784
[4]  
Bache K, 2013, UCI machine learning repository
[5]  
Bartlett PL, 2008, J MACH LEARN RES, V9, P1823
[6]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[7]  
Bishop C. M., 2006, Pattern Recognition and Machine Learning, V128
[8]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[9]  
Breiman L., 2017, Classification and Regression Trees, P358, DOI 10.1201/9781315139470
[10]  
Chandra A. K., 1976, Theoretical Computer Science, V3, P293, DOI 10.1016/0304-3975(76)90048-7