On the differences between Szeged and Wiener indices of graphs

被引:30
作者
Nadjafi-Arani, M. J. [1 ]
Khodashenas, H. [1 ]
Ashrafi, A. R. [1 ]
机构
[1] Univ Kashan, Fac Sci, Dept Math Stat & Comp Sci, Kashan 8731751167, Iran
关键词
Szeged index; Wiener index; Block; PI-INDEXES; NANOSTRUCTURES;
D O I
10.1016/j.disc.2011.06.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph and eta(G) = Sz(G) - W(G), where W(G) and Sz(G) are the Wiener and Szeged indices of G, respectively. A well-known result of Klavzar, Rajapakse, and Gutman states that eta(G) >= 0, and by a result of Dobrynin and Gutman eta(G) = 0 if and only if each block of G is complete. In this paper, a path-edge matrix for the graph G is presented by which it is possible to classify the graphs in which eta(G) = 2. It is also proved that there is no graph G with the property that eta(G) = 1 or eta(G) = 3. Finally, it is proved that, for a given positive integer k, k not equal 1. 3, there exists a graph G with eta(G) = k. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2233 / 2237
页数:5
相关论文
共 21 条
[1]  
Ashrafi AR, 2008, UTILITAS MATHEMATICA, V77, P249
[2]  
Dobrynin A., 1995, Graph Theory Notes of New York, V28, P21
[3]  
Dobrynin A., 1994, Publ. Inst. Math. (Beograd), V56, P18
[4]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[5]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[6]  
Gutman I., 1994, Graph Theory Notes N. Y., V27, P9
[8]   On distance-balanced graphs [J].
Ilic, Aleksandar ;
Klavzar, Sandi ;
Milanovic, Marjan .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) :733-737
[9]   A matrix method for computing Szeged and vertex PI indices of join and composition of graphs [J].
Khalifeh, M. H. ;
Yousefi-Azari, H. ;
Ashrafi, A. R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) :2702-2709
[10]   Some new results on distance-based graph invariants [J].
Khalifeh, M. H. ;
Yousefi-Azari, H. ;
Ashrafi, A. R. ;
Wagner, S. G. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1149-1163