Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae

被引:85
作者
Jin, QL
Hu, WQ
Brown, I
McGhee, G
Hart, P
Jones, AL
He, SY
机构
[1] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Bot & Plant Pathol, E Lansing, MI 48824 USA
[3] Univ London, Imperial Coll Wye, Dept Biol, Ashford TN25 5AH, Kent, England
关键词
D O I
10.1046/j.1365-2958.2001.02455.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pili are required for protein and/or DNA transfer from bacteria to recipient plant or bacterial cells, based on genetic evidence. However, it has never been shown directly that the effector proteins or DNA are localized along or inside the pili in situ. Failure to visualize an association of effector proteins/DNA with pili is the central issue in the debate regarding the exact function of pili in protein and DNA transfer. In this study, a newly developed in situ immunogold labelling procedure enabled visualization of the specific localization of type III effector proteins of Erwinia amylovora and Pseudomonas syringae pv. tomato along the Hrp pilus, but not along the flagellum or randomly in the intercellular space. In contrast, PelE, a pectate lyase secreted via the type II protein secretion system, was not associated with the Hrp pilus. These results provide direct evidence that type III secretion occurs only at the site of Hrp pilus assembly and that the Hrp pilus guides the transfer of effector proteins outside the bacterial cell, favouring the 'conduit/guiding filament' model.
引用
收藏
页码:1129 / 1139
页数:11
相关论文
共 56 条
[1]   Flagellar assembly in Salmonella typhimurium [J].
Aizawa, SI .
MOLECULAR MICROBIOLOGY, 1996, 19 (01) :1-5
[2]   A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes [J].
Aldon, D ;
Brito, B ;
Boucher, C ;
Genin, S .
EMBO JOURNAL, 2000, 19 (10) :2304-2314
[3]   The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J].
Alfano, JR ;
Collmer, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5655-5662
[4]   A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica [J].
Anderson, DM ;
Schneewind, O .
SCIENCE, 1997, 278 (5340) :1140-1143
[5]   Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals [J].
Anderson, DM ;
Fouts, DE ;
Collmer, A ;
Schneewind, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12839-12843
[6]   Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more [J].
Anderson, DM ;
Schneewind, O .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (01) :18-24
[7]  
BARNY MA, 1990, MOL PLANT MICROBE IN, V3, P149
[8]   The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes [J].
Blocker, A ;
Gounon, P ;
Larquet, E ;
Niebuhr, K ;
Cabiaux, V ;
Parsot, C ;
Sansonetti, P .
JOURNAL OF CELL BIOLOGY, 1999, 147 (03) :683-693
[9]   Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the hrp (type III secretion) pathway [J].
Bogdanove, AJ ;
Bauer, DW ;
Beer, SV .
JOURNAL OF BACTERIOLOGY, 1998, 180 (08) :2244-2247
[10]   Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato [J].
Bogdanove, AJ ;
Kim, JF ;
Wei, ZM ;
Kolchinsky, P ;
Charkowski, AO ;
Conlin, AK ;
Collmer, A ;
Beer, SV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :1325-1330