Transcriptional activators control splicing and 3′-end cleavage levels

被引:53
作者
Rosonina, E
Bakowski, MA
McCracken, S
Blencowe, BJ
机构
[1] Univ Toronto, Charles H Best Inst, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada
[2] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5G 1L6, Canada
关键词
D O I
10.1074/jbc.M307289200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have investigated whether transcriptional activators influence the efficiency of constitutive splicing and 3'-end formation, in addition to transcription levels. Remarkably, strong activators result in higher levels of splicing and 3'-cleavage than weak activators and can control the efficiency of these steps in pre-mRNA processing separately. The pre-mRNA processing stimulatory property of activators is dependent on their binding to promoters, but is not an indirect consequence of the levels of transcripts produced. Moreover, stimulation of splicing and cleavage by a strong activator operates by a mechanism that requires the carboxyl-terminal domain of RNA polymerase II. The splicing stimulatory property of activators was observed for unrelated transcripts and for separate introns within a transcript, indicating a possible general role for strong activators in facilitating pre-mRNA processing levels. The results suggest that the efficiency of constitutive splicing and 3'-end cleavage is closely coordinated with transcription levels by promoter-bound activators.
引用
收藏
页码:43034 / 43040
页数:7
相关论文
共 45 条
[1]   MUTATIONS IN RNA POLYMERASE-II ENHANCE OR SUPPRESS MUTATIONS IN GAL4 [J].
ALLISON, LA ;
INGLES, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2794-2798
[2]   EXTENSIVE HOMOLOGY AMONG THE LARGEST SUBUNITS OF EUKARYOTIC AND PROKARYOTIC RNA-POLYMERASES [J].
ALLISON, LA ;
MOYLE, M ;
SHALES, M ;
INGLES, CJ .
CELL, 1985, 42 (02) :599-610
[3]   Coordinate regulation of transcription and splicing by steroid receptor coregulators [J].
Auboeuf, D ;
Hönig, A ;
Berget, SM ;
O'Malley, BW .
SCIENCE, 2002, 298 (5592) :416-419
[4]  
Blau J, 1996, MOL CELL BIOL, V16, P2044
[5]   Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination [J].
Calvo, O ;
Manley, JL .
MOLECULAR CELL, 2001, 7 (05) :1013-1023
[6]   mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain [J].
Cho, EJ ;
Takagi, T ;
Moore, CR ;
Buratowski, S .
GENES & DEVELOPMENT, 1997, 11 (24) :3319-3326
[7]   A CTD function linking transcription to splicing [J].
Corden, JL ;
Patturajan, M .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (11) :413-416
[8]   A UNIQUE STRUCTURE AT THE CARBOXYL TERMINUS OF THE LARGEST SUBUNIT OF EUKARYOTIC RNA POLYMERASE-II [J].
CORDEN, JL ;
CADENA, DL ;
AHEARN, JM ;
DAHMUS, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (23) :7934-7938
[9]   Coordination between transcription and pre-mRNA processing [J].
Cramer, P ;
Srebrow, A ;
Kadener, S ;
Werbajh, S ;
de la Mata, M ;
Melen, G ;
Nogués, G ;
Kornblihtt, AR .
FEBS LETTERS, 2001, 498 (2-3) :179-182
[10]   Coupling of transcription with alternative splicing:: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer [J].
Cramer, P ;
Cáceres, JF ;
Cazalla, D ;
Kadener, S ;
Muro, AF ;
Baralle, FE ;
Kornblihtt, AR .
MOLECULAR CELL, 1999, 4 (02) :251-258