Random walks on finite convex sets of lattice points

被引:4
|
作者
Virág, B [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
convexity; random walks; convergence rate; lattices;
D O I
10.1023/A:1022612814891
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper examines the convergence of nearest-neighbor random walks on convex subsets of the lattices Z(d). The main result shows that for fixed d, O(gamma(2)) steps are sufficient for a walk to "get random," where gamma is the diameter of the set. Toward this end a new definition of convexity is introduced for subsets of lattices, which has many important properties of the concept of convexity in Euclidean spaces.
引用
收藏
页码:935 / 951
页数:17
相关论文
共 50 条
  • [41] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    ANNALS OF PROBABILITY, 2018, 46 (01) : 456 - 490
  • [42] How random are random walks?
    Blei, R
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 19 - 31
  • [43] A simple characterization of tightness for convex solid sets of positive random variables
    Koch-Medina, Pablo
    Munari, Cosimo
    Sikic, Mario
    POSITIVITY, 2018, 22 (04) : 1015 - 1022
  • [44] A simple characterization of tightness for convex solid sets of positive random variables
    Pablo Koch-Medina
    Cosimo Munari
    Mario Šikić
    Positivity, 2018, 22 : 1015 - 1022
  • [45] Random walks of oriented particles on fractals
    Haber, Rene
    Prehl, Janett
    Hoffmann, Karl Heinz
    Herrmann, Heiko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (15)
  • [46] Asymptotic analysis for random walks with nonidentically distributed jumps having finite variance
    Borovkov, AA
    SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (06) : 1020 - 1038
  • [47] An Interlacing Technique for Spectra of Random Walks and Its Application to Finite Percolation Clusters
    Sobieczky, Florian
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (03) : 639 - 670
  • [48] Asymptotic Analysis for Random Walks with Nonidentically Distributed Jumps Having Finite Variance
    A. A. Borovkov
    Siberian Mathematical Journal, 2005, 46 : 1020 - 1038
  • [49] Exact results for the diamond lattice Green function with applications to uniform random walks in a plane
    Joyce, G. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
  • [50] DEeP Random Walks
    Moghaddam, Mandana Javanshir
    Eslami, Abouzar
    Navab, Nassir
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669