Random walks on finite convex sets of lattice points

被引:4
|
作者
Virág, B [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
convexity; random walks; convergence rate; lattices;
D O I
10.1023/A:1022612814891
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper examines the convergence of nearest-neighbor random walks on convex subsets of the lattices Z(d). The main result shows that for fixed d, O(gamma(2)) steps are sufficient for a walk to "get random," where gamma is the diameter of the set. Toward this end a new definition of convexity is introduced for subsets of lattices, which has many important properties of the concept of convexity in Euclidean spaces.
引用
收藏
页码:935 / 951
页数:17
相关论文
共 50 条
  • [1] Random Walks On Finite Convex Sets Of Lattice Points
    Balint Virag
    Journal of Theoretical Probability, 1998, 11 : 935 - 951
  • [2] Random walks on a finite graph with congestion points
    Kang, MH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (02) : 601 - 610
  • [3] Solving convex programs by random walks
    Bertsimas, D
    Vempala, S
    JOURNAL OF THE ACM, 2004, 51 (04) : 540 - 556
  • [4] CONVEX HULLS OF RANDOM-WALKS
    SNYDER, TL
    STEELE, JM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) : 1165 - 1173
  • [5] Random walks and localization on the Penrose lattice
    Kunz, M
    PHYSICA B, 2000, 293 (1-2): : 164 - 182
  • [6] Simulation of distribution of random walks on a lattice
    Jiang, J. G.
    Huang, Y. N.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (02) : 177 - 179
  • [7] CONVEX MINORANTS OF RANDOM WALKS AND LEVY PROCESSES
    Abramson, Josh
    Pitman, Jim
    Ross, Nathan
    Uribe Bravo, Geronimo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 423 - 434
  • [8] On a convex operator for finite sets
    Curgus, Branko
    Kolodziejczyk, Krzysztof
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (13) : 1774 - 1792
  • [9] Frequent points for random walks in two dimensions
    Bass, Richard F.
    Rosen, Jay
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12
  • [10] An algorithm reconstructing convex lattice sets
    Brunetti, S
    Daurat, A
    THEORETICAL COMPUTER SCIENCE, 2003, 304 (1-3) : 35 - 57