Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound

被引:30
作者
Niederreiter, H
Xing, CP
机构
[1] Austrian Acad Sci, Inst Informat Proc, A-1010 Vienna, Austria
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
global function fields; rational places; algebraic-geometry codes; Gilbert-Varshamov bound;
D O I
10.1002/mana.19981950110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct infinite class field towers of global function fields with asymptotically many rational places. In this way, we improve on asymptotic bounds of SERRE, PERRET, SCHOOF, and XING. The results can be interpreted equivalently as asymptotic bounds on the number of rational points of smooth algebraic curves over finite fields. As an application, we show an improvement on the Gilbert-Varshamov bound for linear codes over finite fields of a sufficiently large composite nonsquare order.
引用
收藏
页码:171 / 186
页数:16
相关论文
共 23 条
[1]  
Artin E., 1990, CLASS FIELD THEORY
[2]  
Cassels J. W. S., 1967, ALGEBRAIC NUMBER THE
[3]   On the asymptotic behaviour of some towers of function fields over finite fields [J].
Garcia, A ;
Stichtenoth, H .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :248-273
[4]  
Garcia A, 1996, CR ACAD SCI I-MATH, V322, P1067
[5]   A TOWER OF ARTIN-SCHREIER EXTENSIONS OF FUNCTION-FIELDS ATTAINING THE DRINFELD-VLADUT BOUND [J].
GARCIA, A ;
STICHTENOTH, H .
INVENTIONES MATHEMATICAE, 1995, 121 (01) :211-222
[6]  
HAYES DR, 1974, T AM MATH SOC, V189, P77
[7]  
Ihara Y., 1981, J FS TOKYO, V28, P721
[8]  
Lang S., 1970, ALGEBRAIC NUMBER THE
[9]  
Lidl R., 1994, INTRO FINITE FIELDS
[10]  
MANIN Y, 1981, J FS U TOKYO IA, V28, P715