Rigidity for equivariant K-theory

被引:5
作者
Yagunov, Serge [1 ,2 ]
Ostvaer, Paul Arne [3 ]
机构
[1] VA Steklov Math Inst, St Petersburg 191011, Russia
[2] Univ Bielefeld, Fak Math, D-4800 Bielefeld, Germany
[3] Univ Oslo, Dept Math, Oslo, Norway
关键词
LOCAL-RINGS;
D O I
10.1016/j.crma.2009.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the classical rigidity results for K-theory to the equivariant setting of linear algebraic group actions. These results concern rigidity for rational points, field extensions, and Hensel local rings. To cite this article: S. Yagunov, P.A. Ostvaer, C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1403 / 1407
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 1961, Inst. Hautes Etudes Sci. Publ. Math., P167
[2]  
Colliot-Thelene Jean-Louis., 1997, Fields Inst. Commun, V16, P31
[3]  
Gabber O., 1992, Contemp. Math., V126, P59
[4]   THE K-THEORY OF STRICT HENSEL LOCAL-RINGS AND A THEOREM OF SUSLIN [J].
GILLET, HA ;
THOMASON, RW .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 34 (2-3) :241-254
[5]  
Hartshorne R., 1977, ALGEBRAIC GEOM, V52
[6]  
Hornbostel J, 2007, MATH Z, V255, P437, DOI 10.1007/s00209-006-0049-4
[7]  
KRISHNA A, 2009, ARXIVORG09063933
[8]  
MILNE J. S., 1980, Princeton Mathematical Series, V33
[9]   Rigidity for orientable functors [J].
Panin, I ;
Yagunov, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 172 (01) :49-77
[10]  
Quillen D., 1973, LECT NOTES MATH, V341, P85, DOI [10.1007/BFb0067053, DOI 10.1007/BFB0067053]