Nonlinear modeling of physiological systems with multiple inputs

被引:0
作者
Mitsis, GD [1 ]
Marmarelis, VZ [1 ]
机构
[1] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA
来源
SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES | 2002年
关键词
Volterra models; nonlinear modeling; multiple-input systems;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective modeling of nonlinear dynamic systems can be achieved by employing Laguerre expansions and feedforward artificial neural networks in the form of the Laguerre-Volterra network (LVN). In this paper an extension of the LVN methodology to multiple-input systems is presented. Results from simulated systems show that this method can yield accurate nonlinear models of multiple-input Volterra systems, even when considerable noise is present.
引用
收藏
页码:21 / 22
页数:2
相关论文
共 3 条
[1]   IDENTIFICATION OF NONLINEAR BIOLOGICAL-SYSTEMS USING LAGUERRE EXPANSIONS OF KERNELS [J].
MARMARELIS, VZ .
ANNALS OF BIOMEDICAL ENGINEERING, 1993, 21 (06) :573-589
[2]   Volterra models and three-layer perceptrons [J].
Marmarelis, VZ ;
Zhao, X .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (06) :1421-1433
[3]   Modeling of nonlinear physiological systems with fast and slow dynamics. 1. Methodology [J].
Mitsis, GD ;
Marmarelis, VZ .
ANNALS OF BIOMEDICAL ENGINEERING, 2002, 30 (02) :272-281