Resource allocation and scheduling in the intelligent edge computing context

被引:11
|
作者
Liu, Jun [1 ]
Yang, Tianfu [2 ]
Bai, Jingpan [1 ]
Sun, Bo [3 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430063, Hubei, Peoples R China
[2] Jilin Agr Univ, Coll Informat Technol, Changchun 130118, Jilin, Peoples R China
[3] Henan Inst Technol, Sch Comp Sci & Technol, Xinxiang 453002, Henan, Peoples R China
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2021年 / 121卷
关键词
Edge computing; Deep learning; Mean shift; Personalized allocation; Scheduling; Software defined network (SDN);
D O I
10.1016/j.future.2021.02.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the rapid development of the edge computing, Internet economy has become a new situation in economic development. What has brought development to the Internet economy is a variety of family-based platforms (i.e., edge computing). However, in the face of huge Internet users and different users' shopping habits, reasonably personalized e-commerce platform allocations for users can improve the user's website shopping experience. However, due to the huge user data and the diversity of SDN (software defined network) platforms, it is a huge challenge to reasonably allocate e-commerce resources/platforms to users. The quality of the SDN personalized resource allocations also affects the purchase conversion rate. Clustering algorithm is an algorithm involved in grouping data in machine learning. The same set of data has the same attributes and characteristics, and the attributes or features between different sets of data will be relatively large. In this paper, by using the mean shift clustering algorithm to characterize the behavior data. According to the characteristics of the grouping, we can allocate the e-commerce platform commonly used between the groups. However, using mean shift clustering for personalized allocation faces the problem of too high user data dimensions. Therefore, we first conduct computational efficiency analysis toward each user. We define user behavior sequences for user behavior data and classify user behavior. We transform the grouped user behavior into an embedded vector, and linearly transform the embedded vectors of different lengths into the same semantic space. We process the vectors in the semantic space through the self-attention layer and perform mean shift clustering. Experiments show that, in the edge computing context, our method can reduce the complexity of resource allocation toward complex data and improve the quality of the allocated data. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [1] A Survey of Edge Computing Resource Allocation and Task Scheduling Optimization
    Xu, Xiaowei
    Ding, Han
    Wang, Jiayu
    Hua, Liang
    BIG DATA AND SECURITY, ICBDS 2023, PT II, 2024, 2100 : 125 - 135
  • [2] Organizational Resource Allocation by Mobile Edge Computing in the Context of the Internet of Things
    Li, Changming
    Yu, Baojun
    Su, Qianfu
    Zhang, Hongchen
    IEEE ACCESS, 2022, 10 : 128579 - 128589
  • [3] FAIR: Towards Impartial Resource Allocation for Intelligent Vehicles With Automotive Edge Computing
    Wang, Haoxin
    Xie, Jiang
    Muslam, Muhana Magboul Ali
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02): : 1971 - 1982
  • [4] Intelligent Task Offloading and Resource Allocation in Knowledge Defined Edge Computing Networks
    Zhang, Chuangchuang
    He, Qiang
    Li, Fuliang
    Yu, Keping
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 4312 - 4325
  • [5] Online Offloading Scheduling and Resource Allocation Algorithms for Vehicular Edge Computing System
    Wang, Zhen
    Zheng, Sifa
    Ge, Qiang
    Li, Keqiang
    IEEE ACCESS, 2020, 8 : 52428 - 52442
  • [6] Resource Scheduling in Edge Computing: A Survey
    Luo, Quyuan
    Hu, Shihong
    Li, Changle
    Li, Guanghui
    Shi, Weisong
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (04): : 2131 - 2165
  • [7] Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution
    Gao, Jian
    Kuang, Zhufang
    Gao, Jie
    Zhao, Lian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 3999 - 4009
  • [8] Resource Allocation Scheduling Algorithm Based on Incomplete Information Dynamic Game for Edge Computing
    Wang, Bo
    Li, Mingchu
    INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2021, 18 (02) : 1 - 24
  • [9] Energy-Aware Resource Scheduling for Serverless Edge Computing
    Aslanpour, Mohammad Sadegh
    Toosi, Adel N.
    Cheema, Muhammad Aamir
    Gaire, Raj
    2022 22ND IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2022), 2022, : 190 - 199
  • [10] Global Resource Scheduling for Distributed Edge Computing
    Tan, Aiping
    Li, Yunuo
    Wang, Yan
    Yang, Yujie
    APPLIED SCIENCES-BASEL, 2023, 13 (22):