Complexity of gradient descent for multiobjective optimization

被引:72
作者
Fliege, J. [1 ]
Vaz, A. I. F. [2 ]
Vicente, L. N. [3 ]
机构
[1] Univ Southampton, Sch Math Sci, Southampton, Hants, England
[2] Univ Minho, ALGORITMI Res Ctr, Braga, Portugal
[3] Univ Coimbra, Dept Math, CMUC, Coimbra, Portugal
关键词
Multiobjective optimization; gradient descent; steepest descent; global rates; worst-case complexity; STEEPEST DESCENT; NEWTONS;
D O I
10.1080/10556788.2018.1510928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function.
引用
收藏
页码:949 / 959
页数:11
相关论文
共 17 条
[1]   A Continuous Gradient-like Dynamical Approach to Pareto-Optimization in Hilbert Spaces [J].
Attouch, Hedy ;
Goudou, Xavier .
SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (01) :189-219
[2]  
Beck A., 2017, MPS SIAM SERIES OPTI
[3]   Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models [J].
Birgin, E. G. ;
Gardenghi, J. L. ;
Martinez, J. M. ;
Santos, S. A. ;
Toint, Ph. L. .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :359-368
[4]   Proximal methods in vector optimization [J].
Bonnel, H ;
Iusem, AN ;
Svaiter, BF .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) :953-970
[5]   Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem [J].
Carrizo, Gabriel A. ;
Lotito, Pablo A. ;
Maciel, Maria C. .
MATHEMATICAL PROGRAMMING, 2016, 159 (1-2) :339-369
[6]   ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, Ph. L. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :2833-2852
[7]   Steepest descent methods for multicriteria optimization [J].
Fliege, J ;
Svaiter, BF .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2000, 51 (03) :479-494
[8]   NEWTON'S METHOD FOR MULTIOBJECTIVE OPTIMIZATION [J].
Fliege, J. ;
Grana Drummond, L. M. ;
Svaiter, B. F. .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) :602-626
[9]  
Fukuda Ellen H., 2014, Pesqui. Oper., V34, P585
[10]  
Grapiglia G.N., 2016, WORST CASE COMPLEXIT