Semiparametric method and theory for continuously indexed spatio-temporal processes

被引:1
作者
Liu, Jialuo [1 ]
Chu, Tingjin [2 ]
Zhu, Jun [3 ]
Wang, Haonan [1 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Bimodal kernel; Random fields; Spatial statistics; Spatio-temporal statistics; MAXIMUM-LIKELIHOOD-ESTIMATION; NONPARAMETRIC REGRESSION; VARIABLE SELECTION; COVARIANCE; MODELS;
D O I
10.1016/j.jmva.2021.104735
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal processes with a continuous index in space and time are useful for modeling spatio-temporal data in many scientific disciplines such as environmental and health sciences. However, approaches that enable simultaneous estimation of the mean and covariance functions for such spatio-temporal processes are limited. Here, we propose a flexible spatio-temporal model with partially linear regression in the mean function and local stationarity in the covariance function. We develop a profile likelihood method for estimation and an effective bandwidth selection in the presence of spatio-temporally correlated errors. Specifically, we employ a family of bimodal kernels to alleviate bias, which may be of independent interest for semiparametric spatial statistics. The theoretical properties of our profile likelihood estimation, including consistency and asymptotic normality, are established. A simulation study is conducted and suggests sound empirical properties, while a health hazard data example further illustrates the methodology. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 46 条
  • [1] On a Semiparametric Data-Driven Nonlinear Model with Penalized Spatio-Temporal Lag Interactions
    Al-Sulami, Dawlah
    Jiang, Zhenyu
    Lu, Zudi
    Zhu, Jun
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (03) : 327 - 342
  • [2] KERNEL SMOOTHING OF DATA WITH CORRELATED ERRORS
    ALTMAN, NS
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (411) : 749 - 759
  • [3] A SPECTRAL DOMAIN TEST FOR STATIONARITY OF SPATIO-TEMPORAL DATA
    Bandyopadhyay, Soutir
    Jentsch, Carsten
    Rao, Suhasini Subba
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (02) : 326 - 351
  • [4] A test for stationarity for irregularly spaced spatial data
    Bandyopadhyay, Soutir
    Rao, Suhasini Subba
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 95 - 123
  • [5] Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes
    Chu, Tingjin
    Liu, Jialuo
    Zhu, Jun
    Wang, Haonan
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 84 (02): : 689 - 713
  • [6] SEMIPARAMETRIC MODELING WITH NONSEPARABLE AND NONSTATIONARY SPATIO-TEMPORAL COVARIANCE FUNCTIONS AND ITS INFERENCE
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    [J]. STATISTICA SINICA, 2019, 29 (03) : 1233 - 1252
  • [7] PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    [J]. ANNALS OF STATISTICS, 2011, 39 (05) : 2607 - 2625
  • [8] Classes of nonseparable, spatio-temporal stationary covariance functions
    Cressie, N
    Huang, HC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1330 - 1340
  • [9] THE ASYMPTOTIC-DISTRIBUTION OF REML ESTIMATORS
    CRESSIE, N
    LAHIRI, SN
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (02) : 217 - 233
  • [10] Cressie N., 1993, STAT SPATIAL DATA, DOI DOI 10.1002/9781119115151