ISOMETRIES FOR THE MODULUS METRIC ARE QUASICONFORMAL MAPPINGS

被引:5
作者
Betsakos, Dimitrios [1 ]
Pouliasis, Stamatis [2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
关键词
Modulus metric; conformal mapping; quasiconformal mapping; condenser capacity; reduced conformal modulus; extremal length; LIPSCHITZ-CONDITIONS; INEQUALITIES;
D O I
10.1090/tran/7712
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a domain D in R-n, the modulus metric is defined by mu D(x, y) = inf(gamma) cap(D, gamma), where the infimum is taken over all curves gamma in D joining x to y, and "cap" denotes the conformal capacity of the condensers. It has been conjectured by J. Ferrand, G. J. Martin, and M. Vuorinen that isometries in the modulus metric are conformal mappings. We prove the conjecture when n = 2. In higher dimensions, we prove that isometries are quasiconformal mappings.
引用
收藏
页码:2735 / 2752
页数:18
相关论文
共 17 条
[11]   THE QUASIHYPERBOLIC METRIC AND ASSOCIATED ESTIMATES ON THE HYPERBOLIC METRIC [J].
MARTIN, GJ ;
OSGOOD, BG .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :37-53
[12]  
MOHRI M, 1984, OSAKA J MATH, V21, P225
[13]  
Ransford Thomas, 1995, LONDON MATH SOC STUD, V28
[14]  
Rickman S., 1993, RESULTS MATH RELATED, DOI [10.1007/978-3-642-78201-5, DOI 10.1007/978-3-642-78201-5]
[15]  
VUORINEN M, 1988, LECT NOTES MATH, V1319, P1
[16]  
VUORINEN M, 1983, MICH MATH J, V30, P369
[17]   N-Capacity, N-harmonic radius and N-harmonic transplantation [J].
Wei Wang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :155-174